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Abstract—Understanding and predicting cellular traffic at
large-scale and fine-granularity is beneficial and valuable to
mobile users, wireless carriers and city authorities. Predicting
cellular traffic in modern metropolis is particularly challenging
because of the tremendous temporal and spatial dynamics in-
troduced by diverse user Internet behaviours and frequent user
mobility citywide. In this paper, we characterize and investigate
the root causes of such dynamics in cellular traffic through a
big cellular usage dataset covering 1.5 million users and 5,929
cell towers in a major city of China. We reveal intensive spatio-
temporal dependency even among distant cell towers, which is
largely overlooked in previous works. To explicitly characterize
and effectively model the spatio-temporal dependency of urban
cellular traffic, we propose a novel decomposition of in-cell and
inter-cell data traffic, and apply a graph-based deep learning
approach to accurate cellular traffic prediction. Experimental
results demonstrate that our method consistently outperforms the
state-of-the-art time-series based approaches and we also show
through an example study how the decomposition of cellular
traffic can be used for event inference.

I. INTRODUCTION

With billions of mobile devices accessing the Internet via
3G/4G/5G networks, cellular traffic has skyrocketed in the past
few years. It is predicted that over 50% of the global devices
and connections will be mobile (e.g., smartphones, tablets)
and the monthly global mobile data traffic will surpass 30.6
exabytes (1018) by 2020 [1]. This trend will continue in the
foreseeable future.

Despite the volume of mobile cellular traffic data, we have
limited knowledge on its spatio-temporal patterns at urban
scale. Tremendous records of cellular traffic collected at cell
towers have been widely adopted for daily network manage-
ment and diagnosis. However, we argue that the big traffic data
from cell towers are also beneficial to understand and predict
urban cellular traffic, which can be extremely valuable for
individual cell towers, cellular carriers, and city authorities. In
the coming 5G era, cell towers can adapt themselves to the dy-
namics in traffic load based on SDN / NFV (Software-Defined
Networking / Network Function Virtualization) technology.
Accurate prediction of cellular traffic will facilitate carriers to
schedule resources to ensure the overall quality of service and
network performance and reduce unnecessary operation cost
by allocating energy and bandwidth tightly based on the future
traffic demand. Cellular data traffic prediction also assists city

authorities to discover certain social events in time for urban
governance. For instance, city managers can take prevention
measures or preemptive actions for spontaneous gatherings of
people to avoid injury caused by crowd stampede.

However, it is extremely challenging to predict mobile
cellular traffic at both large-scale and fine granularity. The
reasons are three-fold. (i) Due to the diverse network demand
of Internet-based applications (e.g., mobile videos, location-
based games, VoIP) and user behaviours (e.g., at work, in
transit, during sleep), the cellular traffic at an individual cell
tower can have a wide dynamic range. According to our
dataset in a major city of China, the traffic volume can
easily peak at around 1GB during rush hours (e.g., 16:00),
which is 100,000 times greater than the traffic during the
least active times (e.g., 04:00). (ii) User mobility introduces
spatial dependencies into the cellular traffic among spatially
distributed cell towers. Our dataset reveals that data traffic
from mobile users (i.e., entering or leaving a cell within
a time interval) can account for up to 90% of the entire
data traffic at cell towers in transportation hubs. We also
observe that such spatial dependencies can occur even between
distant cell towers, as efficient urban transportation easily
enables mobile users to travel across cities within half an
hour. (iii) Geographical distribution of cellular traffic at the
urban scale is also influenced by many other factors, including
land use, population, holidays, and various social activities.
These influential factors further complicate the spatio-temporal
dependencies among cell tower traffic citywide.

Network traffic analysis and prediction have been well stud-
ied, covering from wired Internet to cellular networks. In the
past, mainstream research has modeled traffic patterns using
statistics or probabilistic distribution in the time domain [2],
space domain [3], or both [4]. Although these works provide
a comprehensive understanding of the Internet traffic, the out-
comes cannot be utilized to predict traffic load for individual
cell tower continuously. Traffic prediction is more challenging
than characterization. Existing solutions either totally ignore
the spatial influence of cell towers at different locations [5],
or use an approximate model (e.g., spatial aggregation [6] [7]
or statistical covariance [8]). These solutions fail to capture
the intensive and often long-distance spatial dependency of
individual cell towers induced by citywide user mobility, let
alone the interaction between temporal and spatial factors.978-1-5090-6501-1/17/$31.00 c© 2017 IEEE
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In this work, we carefully investigate the characteristics of
urban cellular traffic with a large-scale cellular data usage
dataset covering 1.5 million users and 5,929 cell towers in a
major city of China. We demonstrate that there is strong, long-
distance, and pervasive spatial dependency among cell tower
cellular traffic, which was overlooked in previous research. To
explicitly account for the spatial dependency, we propose to
decompose the total data traffic volume into in-cell traffic and
inter-cell traffic, and verify the importance of such decompo-
sition in cellular traffic prediction. We leverage a graphical
representation to comprehensively capture the spatio-temporal
correlations of cellular traffic, and exploit graph neural net-
work to learn an efficient spatio-temporal model from our
massive dataset. We also demonstrate that the combination
of in-cell and inter-cell traffic patterns can be applied for
network or social event inference, which is practically helpful
for mobile carriers to adjust network configuration, or for
city authorities to take preventive measures. Evaluations on
our massive dataset validate the effectiveness of our graphical
spatio-temporal model.

The contributions of this work are summarized as follows.

• Conceptually, we decompose cellular traffic into in-cell
and inter-cell traffic to characterize the spatial depen-
dency among cell towers, which was rarely taken into
account previously. We show the necessity and benefits
to account for spatial dependency in cellular traffic pre-
diction through measurements on a massive dataset.

• We jointly consider temporal and spatial dependency
among cell towers and exploit a deep neural network
based model for cellular traffic prediction. The model
effectively parameterizes in-cell and inter-cell traffic, and
is able to learn long-distance spatial correlations for ac-
curate traffic prediction. This is the first work that applies
deep learning for individual cell tower traffic prediction
at urban scale with massive real-world datasets.

• We achieve large-scale (metropolis) and fine-grained
(individual cell tower, half an hour) traffic prediction
and outperform the state-of-the-art by 16.3% in Mean
Absolute Error (MAE) and 17.5% in Mean Absolute
Relative Error (MARE). To the best of our knowledge,
our work is the first that is capable of predicting in such
scale and granularity and has been evaluated on a real-
world big dataset.

In the rest of the paper, we describe our dataset and moti-
vating observations in Section II and Section III, respectively.
On this basis, we propose our graph-based prediction model
in Section IV and evaluate the performance in Section V.
Related works are reviewed in Section VI. Section VII finally
concludes this study.

II. BACKGROUND AND DATA SET

This section presents the architecture of a typical cellular
network monitoring system and gives an overview of our
dataset.

Fig. 1: An illustration of cellular network architecture and data
monitoring system.

A. Data Monitoring in Cellular Networks

Fig. 1 shows the architecture of a typical cellular network
monitoring system. To facilitate network management, a mon-
itoring system is deployed for operators to analyse data traffic,
monitor network performance and detect anomalies. The moni-
toring system consists of a detector and a central. The detector
is deployed in the packet core and the central is deployed in
the Network Operations Center (NOC). Every packet sent by
a mobile device will be monitored on the interface between
the Packet Data Serving Node (PDSN) / Serving Gateway (S-
GW) and Home Agent (HA) / Packet Data Network Gateway
(P-GW) in CDMA and LTE networks. The monitoring sys-
tem records important information for network diagnosis and
forensics. Each record contains bidirectional flow information
with the following key fields: source / destination pair by IP
and / or International Mobile Station Equipment Identification
(IMEI) / International Mobile Subscriber Identification (IMSI)
or Network Access Identifier (NAI) / Electronic Serial Number
(ESN) / Mobile Station Identifier (MSID), application(s) and
wireless network resources consumed (e.g., traffic volume,
airtime, connection setup counts).

B. Dataset Description

Our dataset was collected by a major cellular carrier in a big
city of China. Each entry records a unique anonymized user
ID, the flow create time, the flow connected cell tower ID,
App ID, device type ID, uplink traffic and downlink traffic.
In our study, we exploit downlink traffic for analysis. Table I
summarizes the basic statistics for the dataset. To the best of
our knowledge, the dataset is the one of the largest urban-
scale cellular traffic dataset in terms of the number of mobile
users and cell towers. The wide coverage in mobile users and
cell towers promises to capture comprehensive varieties and
spatial dynamics in cellular traffic patterns.

III. PRELIMINARY OBSERVATION AND MOTIVATION

A. Spatio-temporal Distribution of Cellular Traffic

Fig. 2 shows the spatial distribution of cellular traffic (bytes
per half-hour per km2) at different times (04:00, 10:00, 16:00,
00:00) on June 15th, 2016, a weekday. Specifically, cell

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:08:43 UTC from IEEE Xplore.  Restrictions apply. 



(a) 04:00 (b) 10:00 (c) 16:00 (d) 00:00

Fig. 2: Spatial distribution of urban cellular traffic at different times of a day.

0 5 10 15 20

Hour

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z

e
d

 T
ra

!
c

in-cell tra!c

inter-cell tra!c

(a)

0 5 10 15 20

Hour

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z

e
d

 T
ra

!
c

in-cell tra!c

inter-cell tra!c

(b)

0 5 10 15 20

Hour

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z

e
d

 T
ra

!
c

inter-cell tra!c

in-cell tra!c

(c)

Fig. 3: An illustration of three typical in-cell and inter-cell cell tower data traffic characteristics. (a) In-cell traffic dominant,
collected from a cell tower in a residential area; (b) Inter-cell traffic consistently notable during the daytime, collected from a
cell tower in a shopping mall; (c) Inter-cell traffic surges at certain times, collected from a cell tower in a transit station.

TABLE I: Dataset Description.

Statistics Value

Flow Records 1.7× 1010

Cell Towers 5.9× 103

Covered Users 1.5× 106

Covered Apps 7.0× 102

Covered Area 1.0× 104km2

Date June 5th-18th, 2016

towers in the city center and some industry areas exhibit
heavy cellular traffic throughout the day. Overall the cellular
traffic before dawn (04:00) is low as most residents in the
city are sleeping. At 10:00 the traffic at most areas starts to
increase as most people start working. We observe intensive
cellular traffic widespread through the city at 16:00, indicating
people are involved in diverse activities and are highly mobile.
Surprisingly, we find high volume of cellular traffic even at
midnight. The reason might lie in the fact that it is a metropolis
and there can be rich night life during summer.

B. Characterizing Cell Tower Traffic using In-cell and Inter-
cell Traffic

Existing solutions rarely consider data traffic mobility in-
duced by human mobility, which plays a critical role in
prediction according to our measurement. To understand the
spatio-temporal variates of cell tower traffic, we propose to
distinguish in-cell and inter-cell traffic. Specifically, instead
of considering the traffic of a cell tower ci at time t (denoted
as xt(ci)) as a whole, we propose to decompose xt(ci) into
in-cell traffic xA

t (ci) and inter-cell traffic xB
t (ci), where A

is the set of mobile devices residing within the coverage of
cell tower ci, and B stands for the set of mobile devices just
entering the coverage of ci from another cell tower. Formally,
let Pt(ci) be the set of mobile devices at cell tower ci at time t.
Then xt(ci) = xA

t (ci)+xB
t (ci), where A = Pt(ci)∩Pt−1(ci)

and B = Pt(ci) \ Pt−1(ci). In particular, if a mobile device
traverses several cells in a unit time interval (i.e., half an
hour in our case), it will be associated with ck and put into
the set P (ck), where ck is the last cell along its trajectory.
Accordingly, its traffic during the time interval will be put on
the last cell entirely. This approximation is feasible since the
induced error is ignorable compared with the traffic of a cell
tower.

Fig. 3 shows the normalized hourly traffic characteristics of
three representative cell towers. As shown, the total traffic of
all the three cell towers exhibits dramatic temporal dynamics
within the day, and the three cell towers demonstrate distinc-
tive in-cell and inter-cell traffic patterns. In the first type of cell
towers (Fig. 3a), in-cell traffic overwhelms the entire cellular
traffic, indicating the total traffic volume is dominated by the
Internet access behaviours of a fixed group of users. In the
second type of cell towers (Fig. 3b), inter-cell traffic takes up
a notable portion of the total traffic in the daytime. These type
of cell towers are likely to be located in places with continuous
and intensive mobility in the daytime, e.g., shopping malls. In
the third type of cell towers (Fig. 3c), inter-cell traffic surges
during the morning and evening rush hour and lunch time. A
cell tower at public transportation hubs within the city may
demonstrate such a traffic pattern.

Compared with the first type of cell towers, the data traffic
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of the last two types of cell towers is largely determined by
inter-cell traffic, which is induced by mobility. Mobility from
cell to cell introduces spatial correlations among cell tower
traffics. As a consequence, when predicting the traffic of one
individual cell tower, it is important to take into account the
spatial distributions and dependencies of cellular traffic of cell
towers at different locations. In fact, as we will show in the
evaluation, the state-of-the-art time-series based cellular traffic
prediction approaches [9] [10] perform poorly for the latter
two types of cell towers, as they ignore the spatial correlations
among cell towers induced by mobility.

IV. SPATIO-TEMPORAL MODELLING FOR TRAFFIC
PREDICTION

Motivated by the observations from the above in-cell and
inter-cell traffic pattern analysis, in this section, we propose
a deep graph model for fine-grained (individual cell tower,
half-hour granularity) cellular traffic prediction. Furthermore,
we decompose cellular traffic into explainable components
and design an inference scheme to discover network or social
events.

A. Problem Statement

Formally, our cellular traffic prediction problem can be
formulated as follows. Let C = {ci|i = 1, . . . , Nc} denote
the set of cell towers, where ci is the ith cell tower, and Nc

is the number of cell towers. Let xt(ci) denote the traffic
of a cell tower ci at time t. Given a set of cellular traffic
{x1, . . . , xt−1}, our goal is to predict xt(c) for all c ∈ C. As
demonstrated in Section III-B, the majority of the total data
traffic can be inter-cell traffic induced by mobility. Thus it is
necessary and beneficial to account for spatial dependencies
for accurate cellular traffic prediction. That is, we assume
xt(ci) is dependent on both {xk(ci)} (temporal factor) and
{xk(cj), j 6= i} due to user mobility (spatial factor), where
k = 1, . . . , t− 1.

B. Graph Representation of Spatio-temporal Dependencies

We model the spatio-temporal dependencies of cellular traf-
fic using a graph representation. Specifically, given a directed
graph G = (V,E), we denote each vertex c ∈ V as a cell
tower, and each edge e = (c, d) ∈ E , where d ∈ V , as the
spatial dependency of a cell tower c on d. The neighbours
of c, which have incoming edges or outgoing edges to c,
are represented by NBR(c), and CO(c) stands for the edges
(both incoming and outgoing) connected to c. Given an edge
e = (d, c) ∈ CO(c), its weight w(e) is defined as the total
data traffic vector of mobile devices that move from d to c at
each time t, i.e., [x1(d→ c) · · ·xt(d→ c) · · · ].

Due to the large scale of our dataset (5,929 cell towers), a
complete directed graph can contain huge amounts of edges
(approximately 2 million), thus hindering efficient learning of
model parameters. Besides, in some edges, w(e) only has little
number of nonzero items, which should be regarded as noise.
Therefore we prune edges with small weights to speed up the
learning process and empirically set a threshold of nonzero

count in we to balance prediction accuracy and computing
efficiency.

One important observation in our study is that the inter-cell
traffic is highly correlated with user mobility in the city. Fig. 4
shows the spatial distribution of the corresponding inter-cell
traffic (per half-hour) at 04:00, 10:00, 16:00 and 00:00. The
line width of each edge shows the volume of the corresponding
inter-cell traffic. We omit edges of distances shorter than 3
km to investigate whether there is extensive mobility between
distant cell towers.

From the figure, we find that (1) both the intensity and
geographical distribution of user mobility are tightly correlated
to inter-cell traffic; and (2) inter-cell traffic between two distant
cell towers can be dependent because there may be intense user
mobility.

The first finding justifies our decomposition of cellular traf-
fic into in-cell traffic and inter-cell traffic to characterize spatial
dependencies induced by user mobility. The second finding
indicates that the spatial dependencies among cell tower traffic
may not necessarily be local (e.g., within the same residential
district). The rapid development of urban transportation has
made it easy to transit among urban transportation hubs (e.g.,
airport, train stations), and popular locations (e.g., hot tourist
attractions) within half an hour. Such fast urban-scale mobility
introduces enormous long-distance spatial dependency to cell
towers within the whole city. Thus the neighbourhood defined
in our graph representation is based on device mobility, rather
than geographical distances among cell towers.

C. Learning Spatio-temporal Dependencies via Graph Neural
Networks

To efficiently learn the spatio-temporal dependency in cell
tower traffic, we adopt a Graph Neural Network (GNN) [11]
model. A GNN is a general neural network architecture defined
on a graph structure G = (V,E). Nodes v ∈ V take unique
values from 1, . . . , |V | representing each cell tower in our
model, and edges are pairs e = (v, v′) ∈ V × V . Since
inter-cell traffic is directional, we denote (v, v′) as a directed
edge v → v′. In a GNN, each node v is assigned with a
hidden state named node representation, which is denoted by
hv ∈ Rr, where r is the dimension of node representation.
Node representation hv models the spatio-temporal features
for each node v and is to be trained, which will be explained
later.

To separately encode in-cell traffic and inter-cell traffic into
a GNN, we assign in-cell traffic as the labels for each node,
and inter-cell traffic as the labels of each edge. Specifically,
each node v is associated with a node label sequence xA(v) ∈
Rl, where l is the history data length for prediction and xA

is the identifier for the node labels. Similarly, each edge e is
associated with an edge label sequence xB(e) ∈ Rl, where xB

is the identifier for the edge labels. Afterwards, it is natural to
use the in-cell traffic series to represent the node sequence,
i.e., xA

t (v) = (xA
t−l(v), x

A
t−l+1(v), · · · , xA

t−1(v))
T , and the

inter-cell traffic series to represent the edge sequence, i.e.,
xB
t (e) = (xB

t−l(e), x
B
t−l+1(e), · · · , xB

t−1(e))
T . In the above
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(a) 04:00 (b) 10:00 (c) 16:00 (d) 00:00

Fig. 4: Distribution of inter-cell traffic volume at different times of the same day. The line width of each edge represents the
volume of inter-cell traffic between a pair of cell towers, aggregated by half an hour.
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Fig. 5: An illustration of the cellular traffic prediction process for cell tower c0 using GNN.

modelling, the GNN captures both temporal dependency of
individual cell towers and spatio-temporal dependency among
cell towers network-wide of an order of l, which is an
important parameter for tuning.

For ease of presentation, we overload notations and let
xA(S) = {xA(s)|s ∈ S}, h(S) = {h(s)|s ∈ S}, xB(S) =
{xB(s)|s ∈ S}, and the function In(v) = {v′|(v′, v) ∈ E}
returns the set of predecessor nodes v′ with v′ → v. Analo-
gously, OUT (v) = {v′|(v, v′) ∈ E} is the set of successor
nodes v′ with edges v → v′. The set of all nodes neighbouring
v is NBR(v) = IN(v) ∪ OUT (v), and the set of all edges
incoming to or outgoing from v is CO(v) = {(v′, v′′) ∈
E|v = v′||v = v′′}.

A GNN model maps the graphs to the outputs (prediction
of cellular traffic) in two steps: (1) a propagation step that
computes the node representations h(v) for each node v,
and (2) an output model o(v) = g(h(v), xA(v)) that maps
the node representations (spatio-temporal features) and the
corresponding node label sequence (cellular traffic history of
the target cell tower) to an output o(v) for each v ∈ V .

Propagation Step: The propagation step is an iterative
procedure that propagates node representations. Initial node
representations h(1)(v) are set to arbitrary values. Then each
node representation is updated following the recurrence below
until convergence, where i denotes the timestep, f∗ denotes a
function implemented by a multi-layer neural network:

h(i)(v) = f∗
(
xA(v), xA(NBR(v)), xB(CO(v)),

h(i−1)(NBR(v))
) (1)

Output Model: An output model is defined per node and is
a differentiable function o(v) = g(h(v), xA(v)). In our work,
we adopt graph-level regression for the output model instead
of mapping output g for each node to emphasize the spatial
dependency among cell towers. To train a GNN, all parameters
(i.e., node representations hv and output model g) are learned
jointly using gradient-based optimization such as Almeida-
Pineda algorithm [12] [13], which runs the propagation step to
convergence and computes gradients based on the converged
solution.

In this work, we train a GNN model for each cell tower. To
predict x(v), we feed input xA(v), xA(NBR(v)), xB(CO(v))
into the GNN model. Since the traffic prediction model for
each cell c only depends on a small set of nodes and edges,
the training process for all cell towers can be easily distributed
and paralleled.

Fig. 5 shows an illustrative example of the GNN model we
use to predict the cellular traffic for cell tower c0. The figure
on the left shows the graph representation of cell tower c0
and its neighbours {c1, c2, c3}. The in-cell traffic of each cell
tower will be encoded into ci and the inter-cell traffic will be
encoded into the edges {e1, e2, e3}. The figure on the right
describes the GNN model. Specifically, node representations
{h(ci)}, i.e., the spatio-temporal features, will be learned for
each cell ci in the propagation step using f∗ based on the in-
cell traffic XA and inter-cell traffic XB of all the nodes and
edges connected to ci. Then the node representation h(c0),
together with XA(c0), will be fed into the output model g
to get the prediction result O(c0), i.e., the predicted cellular
traffic for c0.
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D. Event Inference
In addition to data traffic prediction, the decomposition of

in-cell (xA) and inter-cell (xB) traffic also benefits mining
network (or social) events.

We decompose the cellular traffic x into 3 explainable
components: a seasonal component s capturing the periodic
pattern; a trend component u capturing the offset from the
periodic pattern in a period, and a residual component r captur-
ing the instantaneous changes. That is, given a prediction x for
cellular traffic using the GNN model, we rewrite x = s+u+r
with the ratio-to-moving-average method [9], and we conduct
the decomposition for both the in-cell traffic and the inter-cell
traffic, i.e.,

xA = sA + uA + rA

xB = sB + uB + rB

In particular, rA reflects the instantaneous traffic variation
caused by mobility-independent online events, such as an
online live show or an Internet failure, while rB corresponds to
the instantaneous traffic changes caused by mobility-dependent
social events, e.g., a sports game, pop-music concerts, presi-
dential campaign speech, large rallies, traffic jams, etc. Detect-
ing such events will be beneficial for network troubleshooting
and optimization as well as for urban governance and taking
necessary prevention actions.

We show an example of event inference based on traffic
patterns in Fig. 6. From the information of rA and rB , we
can observe that the traffic patterns of both rA and rB are
notably different in the first two days (0-48h). On June 5th
(0-24h), 2016, rB surged twice during morning and evening
and the data volume reached 525% compared with normal
days (the latter four days). Soon following rB’s changes, rA

also experienced large increases twice on June 5th, 2016, with
a data traffic escalation of 3,930%. It can be observed that both
rA and rB changed rapidly and it took less than half an hour
from the starting to the ending of the dramatic traffic shift. This
means the sampling interval of half an hour fails to capture the
details of changes. This is one of the most important reasons
why mobile traffic prediction is extremely challenging.

According to our previous analysis, rB’s changes can be
attributed to user mobility. Thus, we infer that there were
people gathering at 10 a.m. and 5 p.m. and people dispersing
at 1 p.m. and 9 p.m. on June 5th, 2016. On the other hand,
the volume of rA shows that people accessed the Internet
heavily between 10 a.m. to 1 p.m., and between 3 p.m. and
9 p.m., respectively. This observation indicates that there was
either a hot online issue that many people followed through
the Internet or a local event that people were willing to share
on the Internet. Combining the information of both rA and
rB , we believe that the second possibility is more likely.

Through thoroughly search on the Internet, we find that
there was a “shake run” activity with participants signing in
at 12 p.m. and a concert of two pop music stars starting at 4
p.m. on June 5th. This verifies our event inference.

We believe that event inference based on traffic patterns
is valuable but challenging. The difficulty lies in the lack of

ground-truth information of various social events at citywide
scale. The city where our dataset is collected is both an
ancient and modern metropolis with a large population of
more than 10 million. Numerous activities take place each day,
which obstructs our search of events corresponding to traffic
variation. It is common that we succeed in detecting abnormal
traffic patterns but fail to verify our inference, because such
activities may not be posted online, or its information hides
in the ocean of Internet data and we are looking for a needle
in a haystack. As a result, we are unable to conduct extensive
evaluation for event inference at the current stage. However,
the findings so far motivate us a lot and we will continue our
exploration in this direction and leave it as a future work.

V. EVALUATION

In this section, we evaluate the performance of our spatio-
temporal prediction model and compare it with the state-of-
the-art time-series based prediction approaches.

A. Experimental Settings

1) Dataset: We evaluate the performance of our cellular
traffic prediction model on the dataset discussed in Sec-
tion II-B. It covers comprehensive cellular data usage traces
of 1.5 million users monitored at 5,929 cell towers from June
5th to 18th, 2016. As we aim at a temporal resolution of half
an hour, we aggregate the traffic at each cell tower every half
an hour. We choose data from the last two days as the testing
data, and all data before that as training data.

2) Baselines: We compare the performance of our proposed
GNN with Decomposed Cellular Traffic model (GNN-D) with
the following baselines.

NAIVE The NAIVE method simply predicts the traffic at
a certain time based on the traffic at the same
time of the last day. For instance, its prediction
for 15:00 - 15:30, June 17th, 2016 is the traffic
volume for 15:00 - 15:30, June 16th, 2016.

ARIMA Auto-Regressive Integrated Moving Average
(ARIMA) model [9] is commonly used for
modelling time series behaviours and has been
widely adopted in time series prediction [14].

LSTM Long-Short Term Memory (LSTM) [10] is a Re-
current Neural Network (RNN) architecture. Un-
like traditional RNNs, LSTM uses “gates” instead
of activation functions, making it suitable to learn
from experience to classify, process and predict
time series when there are very long time lags of
unknown sizes between important events.

GNN-A We apply the GNN model with Aggregated cel-
lular traffic (GNN-A) as a basic GNN model. In
GNN-A model, we assign the entire cellular traffic
without decomposition as node labels and don’t
absort edge labels into the model.
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Fig. 7: Architecture of LSTM model used for evaluation.

3) Metrics: We evaluate the performance of cellular traffic
prediction based on two metrics: Mean Absolute Error (MAE)
and Mean Absolute Relative Error (MARE).

MAE =
1

|T | · |C|
∑
i,j

|xi(cj)− x̂i(cj)| (2)

MARE =
1

|T | · |C|
∑
i,j

|xi(cj)− x̂i(cj)|
xi(cj)

(3)

where |T | is the size of the testing set, i ∈ [1, |T |] is the index
of each testing sample, j ∈ [1, |C|] is the ID of each cell, and
x̂i(cj) denotes the prediction for xi(cj).

We choose these two metrics to jointly evaluate the pre-
diction performance of traffic volumes considering the wide
dynamic range (from 104 to 109) of our dataset.

4) Model Training: We implement the ARIMA model us-
ing the “forecast” R package [15]. The package automatically
selects the best model parameters based on the given order
constraints. We implement the LSTM model using the “Keras”
python library [16]. Fig. 7 shows the structure of the LSTM
model used in our evaluation. We carefully tune the model
parameters and choose 5 neurons for each LSTM layer with
a 0.2 dropout rate and linear activation function, and we use
the history of the last 3 time units for the best performance.
We implement our GNN-A and GNN-D model using the
GNN toolbox [17]. We choose two propagation layers and
two output layers. Before training, features and targets will be
normalized by max normalizer. We set the GNN parameters
as r = 2, l = 3, and use 5 hidden neurons for each layer of
the propagation model with linear activation function and 6
neurons for each layer of the output model with tanh activation
function.

To evaluate whether our GNN model has been trained
properly, we monitor the training process (1000 epochs) with
qualitative metrics as shown in Fig. 8.

TABLE II: Overall prediction performance.

Method MAE (×107 bytes) MARE

NAIVE 2.784 1.402
ARIMA 1.309 2.114
LSTM 1.255 0.958
GNN-A 1.289 0.922
GNN-D 1.051 0.790

Fig. 8a plots the saturation coefficients during our training.
Saturation coefficient is defined as the mean square error of the
hidden layer’s output in our experiment. For tanh layers, a hid-
den unit is saturated if the saturation coefficient is close to 1 or
−1. For linear models, certain degree of saturation is essential,
while for non-linear models, saturated layer will decrease both
the information capacity and the learning ability of a neural
network [18]. We monitor the saturation coefficients for both
the propagation step (denoted as “propagationNet”, linear) and
for the output model (denoted as “outputNet”, non-linear). As
shown, the saturation coefficients for the propagationNet and
the outputNet are both in the range (0.01, 0.05), indicating the
training process is nonmalignant.

Fig. 8b shows the stability coefficients during the training
process. Stability coefficient measures the difference of outputs
between successive epochs, i.e.,

∑
|(o(t)−o(t−1)|∑
|o(t)| , and indicates

whether the training converges. As shown, the stability co-
efficient gradually drops to nearly zero after 400 epochs,
indicating that the training process will converge.

Fig. 8c shows the normalized mean squared errors (Nor-
malized MSE) on traffic prediction using the validation set.
As shown, after about 80 epochs, both the learning error and
the validation error converge, demonstrating the effectiveness
of the training process.

B. Prediction Performance

Table II summarizes the traffic prediction performance of
our GNN-D methods and the baselines. GNN-D consistently
and significantly outperforms all the baselines in both metrics.
Specifically, GNN-D achieves 62.2%, 19.7%, 16.3%, 18.5%
smaller MAE than NAIVE, ARIMA, LSTM and GNN-A,
respectively, and demonstrates 43.7%, 62.6%, 17.5%, 14.3%
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Fig. 8: Quantitative monitoring of the training process in 1000 epochs. (a) Satiation coefficients of the models in both propagation
and output steps. (b) Stability coefficient and (c) Normalized MSE showing the convergence of training.

improvement in MARE than NAIVE, ARIMA, LSTM and
GNN-A, respectively.

For more insights on the applicability of our method, we
investigate the impact of different factors on the cellular traffic
prediction performance as follows.

Impact of Cellular Traffic Volume. To evaluate the pre-
diction performance for different traffic volume, we divide the
testing set into four subsets based on traffic volume levels:
[0, 106), [106, 107), [107, 108), [108,+∞].

Fig. 9(a) and Fig. 9(b) present the prediction performance
for different traffic volume levels. We make the following
observations from the results. (i) For all prediction methods,
MAE increases with the traffic volume while MAPE decreases
with the traffic volume. (ii) GNN-A performs similarly to
LSTM. It could be explained that the propagation model in
GNN-A is equivalent to a basic recurrent neural network.
Without traffic decomposition, the neural network has similar
encoding capacity for spatial time series to LSTM. (iii) GNN-
D method outperforms the baselines in all levels of traffic
volume. The results indicate that even with an imbalanced
training dataset, our method still outperforms others in pre-
dicting extremely light or heavy traffic and it is applicable to
traffic volumes spanning a wide dynamic range.

Impact of Spatial Dependency. This experiment demon-
strates the prediction performance of our method for cell tower
traffic with different levels of spatial dependency. We quantify
the spatial dependency of cell towers using centrality, which is
a graph term to measure the importance of vertices. There are
various ways to define centrality such as closeness centrality,
betweenness centrality, Eigenvector centrality and PageRank
centrality [19]. PageRank centrality measures centrality by
considering three distinct factors: (i) the number of links it
receives, (ii) the link propensity of the linkers, and (iii) the
centrality of the linkers. Thus PageRank centrality is the most
suitable to measure the levels of spatial dependency of each
cell tower. Fig. 10 shows the distribution of PageRank cen-
trality in the main district of the city where our measurements
were collected. Each point represents a cell tower and its color
stands for the value of its PageRank centrality. We select three
cell towers with high PageRank centrality, denoted by ‘A’, ‘B’
and ‘C’ in Fig. 10. After checking the city maps, we find

that cell tower A is located at a railway station, cell tower
B is within a major shopping mall, and cell tower C is in a
university. All of them are busy and crowded locations with
high user mobility. In all of the three cell towers, inter-cell
traffic takes up a large portion of the total traffic volume and
we expect high spatial dependency of their cellular traffic on
the neighbouring cell towers.

After showing that PageRank centrality can act as an
indicator for spatial dependency of cellular traffic, we plot
the prediction performance of our method for cell towers
within different PageRank centrality levels in Fig. 9(c) and
Fig. 9(d). As shown, with the increase of PageRank centrality
(and thus spatial dependency), MAE increases slightly while
MAPE decreases significantly for all the prediction schemes.
Considering that cells with high spatial dependency usually
have high traffic volume, the slightly increased MAE in
fact leads us to conclude that our method is more accurate
for highly spatial-dependent cells. And GNN-D consistently
outperforms the baselines. For instance, for cell towers with
high centrality (≥ 1.2 × 10−2), GNN-D is 23.3%, 20.5%,
19.0% better than ARIMA, LSTM and GNN-A in MAE, and
60.7%, 26.2%, 11.2% better than ARIMA, LSTM and GNN-A
in MARE.

Temporal View of Prediction Errors. This experiment
shows the temporal trend of the prediction errors of all the
methods. Since both the traffic volume and its changing rate
usually vary with time, the experiment demonstrates how the
prediction accuracy is affected by traffic volume and traffic
changing rate. Fig. 9(e) and Fig. 9(f) plot the MAE and MARE
metrics during one day. In accord with our evaluations of the
impact of traffic volume on the prediction performance, during
busy hours in the morning (7:00, 9:00, 11:00), MAE increases
while MARE decreases, as the traffic peaks at these times.
One exception is that at 10:00, there is a valley in cellular
traffic, and it is expected that for all the methods, MAE will
decrease and MARE will increase. However, both ARIMA and
LSTM have large MAE, indicating that they fail to predict
even modest traffic volume. A closer look at the traffic pattern
around 10:00 shows that the cellular traffic changes rapidly
around 10:00, suggesting intensive mobility, and thus strong
mobility. As ARIMA, LSTM and GNN-A fail to account for
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Fig. 10: Spatial distribution of PageRank centrality.

spatial dependency of cellular traffic, they naturally perform
poorly when there is intensive mobility. In contrast, GNN-D
encodes the spatial dependency into the graph model, so that
it can still predict the fast-changing cellular traffic accurately
and achieve small MAE.

VI. RELATED WORK

Network traffic analysis and prediction has a long history,
from the emergence of data network several decades ago to
today, spanning from Internet [20] [21] to cellular networks
(e.g., voice call [22] and SMS [23]).

In recent years, the explosive growth of mobile Inter-
net applications has drawn numerous research attempts to
characterize cellular traffic from both academy and industry.
Network traffic prediction could benefit plenty of applications.
According to the sources of data traffic records, existing works
can be generally divided into two categories: (i) data recorded
by mobile devices; (ii) traces collected by cellular operators.
For the first category, phone usage information, including
locations, applications, network performance, is automatically
monitored and logged by mobile APPs [24] [25], some of

which work in a crowdsensing manner [26], [27]. The major
limitation of this approach lies in its scale; that is, the user
coverage of data traces is restricted within a group of people
who install some specific APPs on their mobile devices. As a
result, the statistics obtained cannot truly reflect the whole set
of users associated with a cellular tower, not to mention the
global characteristics of a large scale cellular network. On the
other hand, in the dataset collected by cellular operators, users
are passively monitored without awareness. In fact, mobile
carriers are able to record a wealth of information in many
aspects [28] [29], depending on where and in which layer
the monitors are placed in cellular networks. Datasets of the
second category are often employed for analyzing network-
wide statistics with a large user population. Our work, relying
on the dataset collected from citywide cell towers, falls into
the second category.

Most previous works on cellular traffic focus on how to
characterize and understand their statistics and patterns under
the circumstance of various temporal and spatial factors,
device types, application categories, user groups, etc. From
the time domain, the traffic dynamics of IP traffic can be well
captured by Markov models [2]. An interesting fact from [30]
is that only five basic temporal patterns of traffic exist among
cell towers in a city and each of the pattern maps to one
type of geographical locations related to urban ecology. This
branch of researches focuses mostly on temporal variations
without spatial relationship of cells at different locations. From
the space domain, Gotzner et al. [3] breach the homogeneous
assumption in regular spectrum frequency analysis and pro-
pose to model the spatial inhomogeneity of real cellular traffic
with log-normal distributions. [5] demonstrates that the spatial
distribution of the traffic density can be approximated by
the log-normal or Weibull distribution. Furthermore, [4] finds
that the mobile traffic loads follow a trimodal distribution,
which is the combination of compound-exponential, power-
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law and exponential distributions, in terms of both spatial and
temporal dimension. These approaches provide comprehensive
understanding of cellular traffic, e.g., temporal dynamics and
spatial inhomogeneity. However, it still has a long away to
realize traffic prediction.

For the more challenging problem of prediction, by treating
data traffic of cell towers as a time series, the mainstream
solutions employ time domain data analysis and modeling,
such as AutoRegressive Integrated Moving Average (ARIMA)
and Holt-Winters method [31], stochastic process models,
Kalman filtering, etc.

Applying statistical covariance functions, a recent work
[8] considers temporal and spatial factors simultaneously,
which is the most similar to our work. However, the traffic
transfer among cell towers caused by human mobility is not
taken into account. Another attempt [6] models the spatial
correlation by clustering nearby cell towers with the same
traffic pattern into groups and predicts aggregated traffic for
each group. Such relaxation in space domain neither captures
spatial correlation of faraway cell towers, nor provides useful
results for individual cell tower. We adopt an upgraded version
of [6] as the state of the art comparison in our evaluation, via
replacing Elman neural network used in [6] with an up-to-date
Long short-term memory (LSTM) neural network. Different
from these two similar works, our proposed solution explicitly
models spatio-temporal dependency from inter-cell and in-cell
traffic and predicts cellular traffic at a large scale and fine
granularity, through a neural network that can learn from a
graph structure.

VII. CONCLUSION

Motivated by the decomposition of in-cell and inter-cell data
traffic, we model the spatio-temporal features of traffic patterns
in a metropolis by a directed graph and propose a powerful
deep learning approach that can learn from a graph structure.
We achieve large-scale and fine-grained prediction based on a
big data set of cellular network records collected by a mobile
carrier.

Experiment results show that the spatial dependency and the
interaction of spatial and temporal factors play an important
role in accurate and robust prediction. Our findings also
include how their interaction can be used for event inference
through example study. In the future, along with the explosive
growth of mobile Internet and continuously evolving traffic
patterns, known models are outdated and new opportunities
are sprouting.
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