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Understanding citizens’ main transportation modes at urban scale is beneficial to a range of applications, such as urban
planning, user profiling, transportation management, and precision marketing. Previous methods on mode inference are
mostly focused on utilizing GPS data with high spatiotemporal granularity. However, due to high costs of GPS data collection,
the previous work typically is in small scales. In contrast, the cellular data logging interactions between cellphone users and
cell towers cover much higher population given the ubiquity of cellphones. Nevertheless, utilizing cellular data introduces
new challenges given their low spatiotemporal granularity compared to GPS data. In this paper, we design CellTrans, a novel
framework to survey users’ main transportation modes (public transportation or private car) at urban scale with cellular data.
CellTrans extracts various mobility features that are pertinent to users’ main transportation modes and presents solutions
for different application scenarios including when there are no labeled users in the studied cities. We evaluate CellTrans on
two real-world large-scale cellular datasets covering 3 million users, among which 2,589 users are with labels. We assess our
method not only quantitatively with labeled users, but also qualitatively with the whole population. The experiments show
that CellTrans infers users’ main transportation modes with accuracy over 80% (with a performance gain of 20% compared to
state-of-the-art), and CellTrans remains effective when applied at urban scale to the whole population.
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1 INTRODUCTION
Understanding users’ main transportation modes is important for various commercial and societal applications,
including city planning, user profiling, transportationmanagement, precise marketing, and location-based services.
The inference of trajectory’s transportation modes has been well-studied on detailed GPS and phone sensor data
(e.g. accelerator and gyroscope) [5, 32, 49]. Nevertheless, their performance is validated by small-scale surveys,
which may not be representative for urban-scale population. For example, The Geolife dataset [5, 49] contains
GPS trajectories for 182 users; the mobile sensor dataset used by the Sussex-Huawei location-transportation
recognition challenge [10, 37] contains only three users’ data. Analyzing transportation modes at urban scale
with GPS data or phone sensors is almost impossible due to the difficulty of data collection.

Luckily, the emergence of cellular networks has brought new opportunities for the urban-scale main trans-
portation mode analysis. Cellular data can provide information about users’ locations with unprecedentedly large
spatial coverage in a long period (from months to years), and the application of such data takes nearly no extra
cost since it is already collected for billing and monitoring purposes. These advantages have made cellular data
an ideal data source for urban sensing [3, 8, 22, 42].
So, the scientific question we try to answer in this paper is Can cellular data be used to infer users’ main

transportation modes? Since previous works have designed multiple methods to infer trajectories’ transportation
modes utilizing various data [5, 19, 35, 49], a direct solution would be: first, identify the transportation modes of
the user’s all trajectory segments, and then find the most common one as the user’s main transportation mode.
However, this straightforward approach does not work in our scenario. Different from GPS data or cellphone
sensor data, cellular data (e.g., Call Detail Records CDR or Internet Access Log) cannot provide enough fine-
grained information to differentiate the transportation modes of trajectories, especially for the modes that have
similar speeds, e.g., driving car and taking public transportation. The reasons are two fold:

• Coarse spatial granularity: In cellular data, the locations of connected cell towers are used to approximate
the users’ locations. The spatial granularity is decided by the density of cell towers, which are usually
hundreds to thousands of meters away from each other. In comparison, the localization error of GPS can
be smaller than 10 meters [45]. Fig. 1a compares the spatial granularity of our cellular data (detailed in
Sec. 2) and Geolife GPS dataset [50, 52, 53] by the CDF of the distance between consecutive distinct location
records. For Geolife GPS data, most consecutive records are less than 50 meters away; for the cellular data,
the spatial granularity can be as coarse as hundreds or even thousands of meters.
• Irregular temporal sampling:Cellular data’s generation is usually triggered by some user behaviors, such
as calling or accessing Internet. So the sampling frequency is decided by how often users use their phones.
In comparison, GPS is sampled regularly every few seconds. Fig. 1b compares the temporal granularity of
cellular data and GPS by the CDF of inter-record intervals. Nearly all GPS intervals are shorter than ten
seconds while the CDF for cellular data has a long tail towards large intervals.

To address this granularity challenge, we present a new framework in this paper to investigate users’ main
transportation modes at urban scale with cellular data: CellTrans. Instead of focusing on each trajectory segment,
CellTrans considers a long period of users’ location records, covering users’ both mobile status and stationary
status. The expansion of observation time can compensate for the coarse spatiotemporal granularity of cellular
data and provide enough information to extract features that are pertinent to users’ main transportation modes.
Specifically, CellTrans extracts mobility features from three aspects: (i) movement range features that characterize
users’ activity space, (ii) trips’ statistics that describe how often and how fast they usually travel, and (iii) user
behavior features that tell us the basics of users’ living patterns. Compared to velocity and acceleration features,
mobility features are extracted from users’ movements in a longer period and a larger area. Thus, mobility features
are not sensitive to the noise and flaws of cellular data.
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(a) Spatial Granularity (b) Temporal Granularity

Fig. 1. The comparison of Cellular data and GPS on (a) spatial and (b) temporal granularity. (a) is the CDF of the distance
between consecutive distinct location records. (b) is the CDF of the inter-record interval. The curve of Cellular data is drawn
based on our datasets and the curve of GPS is drawn based on the Geolife GPS dataset [50, 52, 53].

Based on the mobility features, we design methods to infer main transportation modes in various application
scenarios: (i) When there are labeled users whose main transportation modes are known by app-based online
survey, we show that even the number of labeled users is very limited, we can still train a supervised model that
works well at urban scale on the whole population; (ii) when there are no labeled users, we design a clustering
based method and also show the generalization capacity of the model trained on mobility features. Finally, we
conduct comprehensive experiments to assess our methods’ performance at urban scale with two cellular datasets
that cover 3 million users within 48 days.
The main contributions of the work are summarized below:
• We design a new framework to survey users’ main transportation modes (public transportation or private
car) at urban scale with coarse-grained cellular data. Instead of focusing on each trajectory segment, we
reveal the relationship between users’ general mobility features and their main transportation modes.
CellTrans extracts robust features that are insensitive to cellular data’s low spatiotemporal granularity and
takes advantage of cellular data’s event-driven property to characterize users’ behavior patterns.
• CellTrans can be applied in various application scenarios with or without labeled data. For scenarios where
labeled data exist and can be used to train a model, we design a set of supervised methods given features we
extracted. More importantly, considering the difficulty to collect labeled users’ data for model training, we
design unsupervised methods that work well without any labeled users from the studied city, including a
clustering-based method and transferred models from other cities. This makes our solutions more practical
and easier to apply to other cities.
• We evaluate the accuracy of CellTrans on two large-scale datasets from two cities. One city’s dataset records
1,835,509 users’ Internet access behaviors in 48 days, and the other city’s dataset covers 1,077,106 users
within 48 days. Among all these users, 2,589 users are with labels to indicate their main transportation
modes, which are used for training and evaluation. By the quantitative evaluation, we show that our
method’s accuracy is higher than the state-of-the-art by 20%, and even when there is no training data at
all, we can still achieve an accuracy about 80%. By the qualitative evaluation, we show that our methods
remain effective when applied to the whole population at urban scale.

In the following sections, we introduce some terms and our datasets in Sec. 2 and present the overall framework
of CellTrans in Sec. 3.1. Then we introduce the three modules of CellTrans in Sec. 3.2, Sec. 4, and Sec. 5. The

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 125. Publication date: September 2019.



125:4 • Zhao et al.

Table 1. Example of mobile flow records.

User Time Tower Tower location HTTP host HTTP URI

xxxx 2016-12-20 16:40:01 572636 (xxx, xxx) m5.amap.com ws/mapapi/navigation/auto
... ... ... ... ... ...

Table 2. Shenyang Dataset

Statistics Value

Records 8 × 109
Cell towers 1.2 × 104
Covered users 1.8 × 106
Covered area 1.3 × 104 km2

Covered period Dec. 19, 2016 - Feb. 4, 2017

Table 3. Dalian Dataset

Statistics Value

Records 12 × 109
Cell towers 1.2 × 104
Covered users 1.1 × 106
Covered area 1.3 × 104 km2

Covered period Dec. 19, 2016 - Feb. 4, 2017

performance is evaluated in Sec. 6. The discussion and related works are in Sec. 7 and Sec. 8. Finally, we conclude
the paper in Sec. 9.

2 PRELIMINARY

2.1 Terminology
We explain some terms in this section, including mobile flow record, trajectory, stay, and trip.
• Mobile flow record: Mobile flow records (MFR) are system logs of users’ Internet access behavior in
cellular networks. When there is a packet transmitted between a mobile phone and its connected cell tower,
the monitoring system of the cellular network generates a mobile flow record. The record notes down the
user’s ID, time, tower’s ID of this connection, as well as the HTTP host and URI of the request (see Table 1).
• Trajectory: Trajectory is a user’s chronologically sorted location records: < t1,p1 >, ..., < tn,pn >, where
ti and pi are the time and location of this user’s ith mobile flow record.
• Stay: A stay is that a user remains in a geographic neighborhood longer than a time threshold. Stays are
usually related to users’ activities like resting at home, working at office, and hanging around in a park.
• Trip: A trip is a continuous subsequence of a user’s trajectory between two neighboring stays. It is after a
user leaves his/her last stay point and before he/she arrives at the next stay point.

2.2 Dataset
We base our design on two large-scale MFR datasets from different cities: Shenyang and Dalian. The two cities are
both located in the northeast of China. The datasets cover 3 million anonymized mobile phone users in 48 days.
The basic statistics of the datasets are shown in Table 2 and Table 3. Also, the individual, spatial, and temporal
distribution of MFR is shown in Fig. 2.
The average number of records per person per day is 91 in Shenyang and 226 in Dalian, but the distribution

among users are uneven as shown in Fig. 2a, so is the distribution among cellular towers (Fig. 2b). Fig. 2c shows
the variation of the number of records with time. Before dawn, MFRs are generated slowly because most users
are in sleep. At night, the generation of MFRs reaches its peak.
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Fig. 2. (a) Individual, (b) spatial, and (c) temporal distribution of MFR. (a) CDF of the number of daily records per person. (b)
CDF of the number of records per cellular tower. (c) The number of records generated in each hour in a day.
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Fig. 3. Framework of CellTrans. Pub. stands for public transportation.

3 OVERVIEW AND PREPROCESSING
This section presents the overall framework of CellTrans (Sec. 3.1) and the preprocessing of MFR (Sec. 3.2).

3.1 Overview
CellTrans consists of three modules (see Fig. 3):
• Preprocessing: This module preprocesses the noisy MFR data (Sec. 3.2). It deals with the oscillation [28]
(ping-pong effect) and bursty sampling problems.
• Trajectory Processing: This module first extracts users’ stays and trips from the rectified MFR trajectories,
and then extracts mobility features based on users’ stays and trips (Sec. 4). The mobility features are from
three categories, i.e., movement range, trip statistics, and user behavior features.
• Main Transportation Mode Inference: This module infers users’ main transportation modes (Sec. 5)
based on the mobility features. We consider two application scenarios: when we have some labeled users
whose main transportation modes are known, we can train a supervised model on these users; when we do
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not have any labeled users, we design a clustering-based method and investigate the transferability of the
models trained on other cities’ labeled users.

3.2 Preprocessing
The preprocessing of MFR needs to deal with two problems:

Oscillation: Oscillation problem (ping-pong effect) occurs when mobile phones switch between towers
rapidly, even though users do not move at all [28]. In this paper, we utilize the method designed by Yang
et al. to deal with the oscillation problem. First, a user’s mobile flow records are sorted chronologically as
< t1,p1 >, < t2,p2 >, ..., < ti ,pi >, ... where ti is the timestamp and pi is the location of the ith record, then a
record < ti ,pi > is filtered out as oscillation noise if:

Dist(pi−1,pi ) > dthresh & Dist(pi ,pi+1) > dthresh &
ti − ti−1 < tthresh & ti+1 − ti < tthresh

(1)

where Dist is the Euclidean distance function, dthresh is a threshold for long distance, and tthresh is a threshold
for short time. dthresh is set to 3.6 km and tthresh is set to 108 s following the method in [48].

Bursty Sampling: The generation of MFRs used in this paper is triggered by users’ Internet access behaviors.
Based on some previous studies, people usually access Internet resources in a bursty manner [16, 38]. When
people use their phones intensively, many records are generated in a short time, which causes redundancy in the
location data. We take a record < ti ,pi > as redundancy and filter it out if ti − ti−1 < 10 s and pi = pi−1.

4 TRAJECTORY PROCESSING
In this section, we introduce the trajectory processing module. This module includes two parts: first, we identify
users’ stays and trips from the preprocessed trajectories (Sec. 4.1); then we extract the mobility features based on
users’ stays and trips (Sec. 4.2).

4.1 Stays and Trips
Parsing users’ raw cellular data into stays and trips is the basis for further analysis [1, 6]. Stays usually correspond
to users’ activities like resting at home or working at office. Trips are trajectory segments when users travel from
one stay region to another by some transportation means. In this paper, we use the method presented by Jiang
et al. to extract stays from users’ cellular data and then, we identify the trajectory segments between adjacent
stays as trips.

4.2 Mobility Features
CellTrans extracts mobility features from three categories:

4.2.1 Movement Range. Features in this category reveal the range of a user’s movement. Compared to public
transportation, driving car is a more convenient and flexible transportation means. For users whose main
transportation modes are driving car, it is easier to travel to faraway places. So intuitively, the movement range
of car users tend to be larger than that of public transportation users. For instance, Fig. 4a and Fig. 4b are a car
user and a public transportation user, and the size of their movement range is quite different. The first feature to
describe a user’s movement range is:
• Radius of gyration (rд): The radius of gyration has been widely adopted to characterize the mobility level
of a user [11, 29]. It is calculated based on a user’s stays:

rд =

∑n
i=1 Dist(si .p, cm) ∗ si .t∑n

i=1 si .t
cm =

∑n
i=1 si .p ∗ si .t∑n

i=1 si .t
(2)
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(a) A car user. (b) A public transportation user. (c) A public transportation user.

Fig. 4. Visualization of 3 users’ stays: one car user (a) and two public transportation user (b)(c). The green circles represent
users’ stays. The radius of the circle corresponds to the stay time. Larger circle means that users spendmore time there. (a) rд =
5591m,ncluster = 39,aconvex = 523 km2, (b) rд = 2058m,ncluster = 12,aconvex = 52 km2, (c) rд = 7204m,ncluster =
22,aconvex = 179 km2

where rд is the user’s radius of gyration, n is the number of the user’s stays, si .p and si .t are the position
and interval of the ith stay, Dist is the Euclidean distance function, and cm is the center of mass of the
user’s stays.

There is a drawback with rд . It can only reflect one-dimension information of the distribution of users’ stays.
For example, if there are n points distributed evenly on the edge of a circle. No matter how n varies, the rд of
them will always equal to the circle’s radius. In order to measure users’ movement range comprehensively, we
consider two other features:
• Number of distinct stay clusters (ncluster ): We cluster the stays of a user with DBSCAN [7], a widely
used spatial clustering method [43, 44]. The number of clusters can disclose how many distinct places a
user visits. We do not use the number of stays directly because some stays may be very close to each other,
and they are visits to the same place at different times. In our case, the places which users only visit one or
two times are also important. In order to capture these outlier places, we set the threshold min_samples of
DBSCAN to 1. This threshold controls how many stays at least can form a cluster. With this setting, even a
stand-alone stay is far from all the other stays, it will form a cluster, too.
• Convex hull area of stays (aarea): The area of the stays’ convex hull can be an indicator of how much
area a user’s activities cover.

A real-life example can be seen in Fig. 4, the public transportation user in (c) has a very large rд , even larger than
the car user in (a). But if we take ncluster and aarea into consideration, (c) actually has a smaller movement range
than (a). Therefore, together with the radius of gyration, the number of stay clusters and area of convex hull
provide comprehensive characterization of a user’s movement range.

4.2.2 Trip Statistics. The features in this category characterize users’ trips. Due to the low spatiotemporal
granularity, it is nearly impossible to calculate the real-time speed of trips. However, for the inference of users’
main transportation modes, the high-level statistics of trips can provide useful information:
• Number of trips (ntr ip ): As discussed in Sec. 4.2.1, having car reduces the time cost for users to travel to
other places. Thus if two users have the same level of desire to travel, the user that have car tends to go out
more often, thus have more trips than the user whose main transportation mode is public transportation.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 3, Article 125. Publication date: September 2019.



125:8 • Zhao et al.

Table 4. Summary of Mobility Features

Feature Description

Movement Range
rд Radius of gyration
nclusters Number of distinct stay clusters
aarea Convex hull area of stays

Trip Statistics
ntr ip Number of trips
nnt Number of night trips
av_ntr ip Average number of trips per day
av_nnt Average number of night trips per day
avv Average speed of trips
avt Average time of trips

User Behavior
inet Network access intensity
tleave Time to leave home
tback Time to come back home
phouse House price (income level)

• Number of night trips (nnt ): This feature is based on the common sense that the public transportation
system is mostly not in operation at night (usually after 11:00 pm). So the high-speed trips at night are
presumably car trips since no buses are running. This feature is helpful to find car users who have rich
night activities.
• Average number of (night) trips per day (av_ntr ip and av_nnt ): We notice that the days that users
have records are different for different users. Some users appear in more days than others. To compensate
for the sampling bias, we divide the above two features by the number of days when users have records.
• Average speed and average time of trips (avv and avt ): For a public transportation trip, users usually
need to walk to the bus station first, and after getting off the bus, they often have to walk again to their final
destination. Besides, the bus stops at intermediate stations instead of heading directly to the destination.
As a consequence, same-length bus trips are usually slower and more time-consuming than car trips.

4.2.3 User Behavior. We consider the features related to users’ daily behaviors and economical status. Cellular
data’s event-driven property causes the uneven sampling and other problems. Being event-driven can also be an
advantage of cellular data: it enables the cellular data to contain user behavior information, e.g. how heavily the
user uses his/her phone and when the user begins to use the phone actively in the morning. In the third category,
we take this advantage and consider the features that can describe users’ daily behaviors, including their network
access behaviors and daily schedules.

Mode preference is also influenced by users’ economical status. Wang et al. take users’ socioeconomic features
into the inference of transportation modes, including whether having a bus card, the number of household
bicycles, and the number of household cars. However, these information is difficult to collect at urban scale. In
this paper, we use the house price of the area where people live as a feature to reflect users’ income level, which
is easier to acquire at large scale with low cost.
• Network access intensity (inet ): MFR records users’ locations in case they retrieve data from cell towers.
This event-driven mechanism makes MFR capable of approximating users’ phone usage behaviors. Users
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driving cars use their phones less frequently than the users on buses because they need to focus on driving.
We calculate the average frequency at which users generate records during trips as an indicator of the
network access intensity (inet ).
• Time to leave home (tleave ) and come back home (tback ): We utilize the average time when users leave
and come back home to describe their basic life patterns. We identify users’ homes as the places they spend
most time at night (from 20:00 to 08:00 the next day). This simple heuristic rule has been applied in a few
previous works to identify places of residence [17, 26, 43].
• House price (phouse ): The house price can reflect users’ income level. People with low income usually
prefer public transportation. The house price is acquired from [40].

We summarize the mobility features introduced in this section in Table 4. The importance and distribution of
the features will be discussed in Sec. 6.4.

5 MAIN TRANSPORTATION MODE INFERENCE
Based on the mobility features extracted in the last section (Table 4), we can infer a user’s main transportation
mode. In some scenarios, the operators or the governments have cellular data and some labeled users whose
main transportation modes are already known. In this case, a supervised model can be trained (Sec. 5.1). In other
scenarios, there are no labeled users whose transportation modes are known. For such scenarios, we design
unsupervised methods that does not have a training process (Sec. 5.2).

5.1 Scenario 1: With Label Data
In the first application scenario, we assume that partial users’ actual main transportation modes are known. So a
model can be trained to relate citizens’ mobility features to their main transportation modes. Multiple supervised
learning models can be applied in this scenario, e.g., Decision Tree, Support Vector Machine and Multilayer
Perceptron, and their performance will be evaluated in Sec. 6.2.1.
Fig. 5 shows how CellTrans infers users’ main transportation modes in this scenario: first, we find out the

users whose main transportation modes are very likely on foot by rules. These users are supposed to have a
relatively smaller movement range compared to car and public transportation users. So a user is identified as
travelling mainly on foot if his/her rд is smaller than a threshold rthrd .

We acknowledge that such a method may not be robust. There can be users who prefer driving or taking taxis
for very small distances. These users may be wrongly taken as traveling-mainly-on-foot users. Actually, MFRs
record locations at the granularity of cell towers, so they can not characterize users’ movement in short ranges.
Also, we donot have groundtruth for traveling-mainly-on-foot users to evaluate the accuracy. So here we choose
a relatively simple method to identify major on-foot users and focus on the differentiation between private car
and public transportation.
Among the remaining users, we train a supervised model with the labeled users to infer users’ main trans-

portation modes between private car and public transportation based on users’ mobility features. Finally, we
apply the model to all the users whose rд is larger than rthrd to classify them as car users or public transportation
users. The determination of the threshold will be discussed in Sec. 6.2.2.

5.2 Scenario 2: Without Label Data
The training of the supervised model in Sec. 5.1 needs labeled data. However, it is not trivial to label users’
transportation modes. So in this section, we introduce the methods to survey users’ modes when there are no
label data in the studied cities. First, we introduce a clustering-based method in Sec. 5.2.1. Then we discuss the
transferability of the supervised models between cities in Sec. 5.2.2.
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Fig. 5. Framework of the method for scenario 1. First, on-foot users are identified based on rд . Among the remaining users,
we train a supervised model to differentiate car users and public transportation users.

5.2.1 Clustering-based Method. This method first clusters the users into groups using the mobility features. We
assume that the users in the same group have the same mode. To find out the modes of the groups, we show
domain experts the group centers’ mobility features and ask them to infer each group as “private car” or “public
transportation”. For example, if a group center’s ncluster is larger than others, this group’s users are probably
car users. After the group centers’ modes are inferred, all the users are inferred to have the mode of their group
centers.

To evaluate the performance of this method independently of experts’ inference, we study the upper bound of
this method’s accuracy as following:

AssumeU to be the set of total users,Ul ⊆ U to be the set of labeled users. We do not use these labeled users
to train the model, instead, we use them to assess the method’s performance. After clustering, we get nc clusters
C0,C1, ...,Cnc−1, where Ci is the set of users in the ith cluster. For each cluster Ci ,Ul ∩Ci is the labeled users in
this cluster. We take the most common mode inUl ∩Ci as the inferred mode for this cluster. Then all users in Ci
are inferred to have this mode. It is evident that this is the best inference an expert can make and the accuracy of
this inference will be the upper bound of the clustering-based method’s accuracy.
The clustering method we adopted is k-means. The selection of the parameter k of k-means is a tradeoff: if k

is too large, the upper bound of accuracy will be high. For example, if k equals the number of users (k = |U |),
although the upper bound will be 100%, the expert’s inference of clusters’ modes would be very difficult, and the
clustering would be meaningless. On the other hand, if k is too small, the needed expert efforts will be minor, but
the accuracy is not likely to be high. The proper value of k will be studied in Sec. 6.3.

5.2.2 Transfer Models between Different Cities. In this section, we discuss the transferability of the supervised
models in Sec. 5.1. Assume that there are two cities: city A and city B. In city A, we have labeled users whose
transportation modes are known. In city B, there are no labeled users. The question is: can we use the model
trained on city A’s labeled users to infer the transportation modes of city B’s users? There are two reasons why
the supervised model of CellTrans is transferable between cities:

• We extract general features about users’ mobility patterns without directly utilizing the low-level city-
dependent features like the longitude and latitude of users. High-level features are usuallymore generalizable
than low-level features.
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Table 5. Shenyang Groundtruth

Transportation mode # Groundtruth users

Car 679
Public transportation 633

Table 6. Dalian Groundtruth

Transportation mode # Groundtruth users

Car 813
Public transportation 464

• All the features are normalized. For each feature, its value is normalized into [0, 1] as in Eq.(3), where
fi j (f normi j ) is the raw(normalized) value of the ith user’s jth feature andU is the set of all users. Different
cities may have different magnitudes, and this may influence the absolute values of mobility features. For
example, in a larger city, the movement range of users may all tends to be larger. After normalization,
features are transformed into relative value compared to other citizens. The normalization can decouple
the city-dependency from the mobility features, thus improving the model’s transferability.

f normi j =
fi j −min({ fi j |i ∈ U })

max({ fi j |i ∈ U }) −min({ fi j |i ∈ U })
(3)

To summarize, if we want to infer users’ modes in a city where there are no labeled users, we have two options:
(i) the clustering based method in Sec. 5.2.1. (ii) the transferred supervised model from other cities (Sec. 5.2.2).

6 EVALUATION
First, we introduce the evaluation methodology in Sec. 6.1. Then we evaluate the performance of CellTrans under
different application scenarios in Sec. 6.2 and Sec. 6.3. We analyze the importance and distribution of mobility
features in Sec. 6.4. Finally we explore the impacts of spatiotemporal granularity in Sec. 6.5

6.1 Evaluation Methodology
Datasets:We evaluate the performance with two large scale MFR datasets from two cities in the northeast of
China: Shenyang and Dalian. The statistics about the two datasets are introduced in Sec. 2.2.
Inference task: The task is to infer users’ main transportation modes based on their MFRs. We first extract
users’ mobility features as in Sec. 4.2 from MFR, and then apply supervised or unsupervised models to infer the
main transportation modes.
Ground truth: The groundtruth of users’ main transportation modes is from the usage analysis of Amap, one of
the most popular navigation applications in China. We find that when users use Amap on their phones, different
transportation modes’ navigation will generate different HTTP URIs.
We count the number of days that users use either mode’s navigation service. Users with more than 17 days’

usage of car navigation and no public transportation navigation are identified as groundtruth car users; users
with more than three days’ usage of public transportation navigation and no car navigation are identified as
groundtruth public transportation users. The reason that the two thresholds are different is: people are more likely
to use navigation applications when they drive cars than take public transportation. The numbers of groundtruth
users in two cities are listed in Table 5 and Table 6.
Performance metrics:We use three metrics to assess the performance of different methods: accuracy, precision,
and recall. Precision and recall are averaged over the two classes.
Baseline: Previous works have designed multiple methodologies to infer the transportation mode of a trip. As
baselines for our inference task, we first infer trips’ transportation modes with these methods and then the most
common transportation mode of a user’s trips is considered to be the main mode. The baselines are:
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Table 7. Methods to infer main transportation mode.

Method Input

CellTrans with SVM User mobility features Sec. 4.2
CellTrans with Decision Tree (Tree) User mobility features Sec. 4.2
CellTrans with Random Forest (RF) User mobility features Sec. 4.2
CellTrans with MultiLayer Perceptron (MLP) User mobility features Sec. 4.2
Baseline 1: Aggregation with Decision Tree (Agg. Tree) Trip velocity/acceleration features [49]
Baseline 2: Aggregation with CNN (Agg. CNN) Trip velocity/acceleration sequences [5]

• Agg. Tree: Zheng et al. extract basic and advanced features from trajectories including the velocity,
acceleration, heading direction and so on. A decision tree is applied to infer trips’ transportation modes
based on these features.
• Agg. CNN: Dabiri and Heaslip devise a CNN based model to infer GPS trips’ transportation modes. It uses
a one-dimension convolution network on the sequences of speed, acceleration, jerk, and bearing rate.
• Agg. Station: For cellular data, Li et al. suggest identifying bus trips by measuring the closeness between
trips’ starting and end points to the bus stations.
• Agg. Cluster: Wang et al. present another method focusing on cellular data. They first aggregate the trips
that have close starting points and end points. Then each group of trips are clustered into two clusters by
their traveling time. The group with shorter traveling time is identified as car trips, and the other group is
public transportation trips.
• Route matching: Phithakkitnukoon et al. design a method to determine users’ transportation modes
based on cellular data. They query the driving and public-transport routes using map service API. Then
they measure the distance between the routes and users’ records. The mode of the closest route is taken as
the user’s mode.

Due to the lack of ground truth, the last three baselines focusing on cellular data have not been evaluated
at individual level in their original papers. In the following experiments, we take the first two methods as the
baselines for our first application scenario (Sec. 6.2) because they need labeled data for their training process; the
last three methods, which are rule-based and do not have a training process, are the baselines for our second
application scenario (Sec. 6.3).

6.2 Scenario 1: With Label Data
In the first application scenario, we assume that the operators or city governments have cellular data along with
some labeled users whose main transportation modes are already known. We do not have the ground truth
transportation modes for all individuals in the city, so the quantitative analysis of our method’s performance
is only on the labeled users (Sec. 6.2.1). The performance on the whole population is evaluated qualitatively
(Sec. 6.2.2).

6.2.1 Quantitative Evaluation. In this section, we compare the performance of our method introduced in Sec. 5.1
with previous methods. The comparing methods are summarized in Table 7. The SVM model uses radial basis
function kernel. We evaluate different methods with 5-fold cross-validation.
As shown in Fig. 6, our method that applies SVM to mobility features performs consistently better than the

baselines through different metrics and different cities. In Shenyang, our method improves the accuracy by 20%,
precision by 16% and recall by 21%; in Dalian, our method improves the accuracy by 19%, precision by 10% and
recall by 30%. The low spatiotemporal granularity makes it nearly impossible to extract detail velocity information
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(a) Shenyang (b) Dalian

Fig. 6. Comparison of CellTrans with previous methods. (a) shows the results of Shenyang and (b) shows the results of
Dalian.

(a) Shenyang (b) Dalian

Fig. 7. Impact of the proportion of training data on different methods’ accuracy. (a) shows the results of Shenyang and (b)
shows the results of Dalian.

from cellular data. Therefore, previous methods depending on velocity and acceleration to infer transportation
modes become ineffective.
Specifically for the CNN model, the reasons why it does not perform well are: (i) The CNN model designed

by Dabiri and Heaslip takes the sequences of speed, acceleration and other features as input. However, such
fine-grained features can not be extracted from cellular data accurately. (ii) Cellular data are much noisier and
more irregular than GPS. It needs heavy processing to extract informative features from cellular data. CNNs can
learn effective features automatically from raw data, but this is based on huge amount of training data.
Further, we try to answer two questions about the inference of users’ main transportation modes:
How many labeled users do we need? The labeled users only count a small part of the city’s whole

population. So can we train a model with a small number of labeled users that can work well on a large number
of users? To answer this question, we vary the number of labeled users that are used to train the model and
observe how the accuracy evolves on the remaining labeled users. Each experiment is repeated ten times and
the average accuracy is shown in Fig. 7. First, our methods outperform the baselines consistently in different
cities and with different training set sizes. Second, among the methods based on users’ mobility features, SVM,
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(a) Shenyang (b) Dalian

Fig. 8. Impact of the number of observation days (ndays ) on the methods’ accuracy. The y-axis error bar is the standard
deviation of 5-fold cross-validation. (a) shows the results of Shenyang and (b) shows the results of Dalian.

Table 8. The Proportion of Car Users Based on Census data and CellTrans.

City Population Cars Cars
Population Total Users Stable Users Car Users Car Users

Stable Users Error

Shenyang 8,292,000 1,567,000 0.19 1,835,509 321,699 31,818 0.10 0.09
Dalian 5,956,300 1,520,000 0.26 1,077,106 562,277 178,434 0.32 0.06

MLP and Random Forest have close performance and they all consistently perform better than Decision Tree.
Third, with the increment of training data, the performance of our methods improves slightly. Even with only
one-fifth data as the training set, our method still achieves an accuracy above 80%. This implies that the accuracy
is not sensitive to the size of the training set. Although we only have a small number of labeled users, it should
be enough to train a model that can achieve high accuracy on the whole population.
How many days of records do we need? Main transportation mode is an aspect of users’ living habits.

Inferring it may need a long time observation of users’ activities. In this experiment, we scissor the first ndays of
users’ records to infer their main modes with SVM. Fig. 8 demonstrates how the accuracy varies with ndays in
two cities. The y-axis error bar is the standard deviation of 5-fold cross-validation. We can see that the accuracy
grows higher with a longer observation time in both cities, but the growing speed slows down gradually. To
achieve an accuracy above 80%, we need more than 21 days of users’ records.

6.2.2 Qualitative Evaluation. In the second part, we analyze the performance of CellTrans qualitatively at urban
scale. The evaluation is from two aspects: first, we compare the statistics extracted from our results with that
published by governments; second, we visualize the spatial distribution of car/public transportation users.
Before we apply the trained model to the whole population, we need to filter out the users who do not have

enough data and the users whose main transportation modes are on foot. We only keep the users whose location
records span more than 21 days (as we discussed previously), and we refer to these users as stable users.
As we mentioned in Sec. 5.1, a user is filtered out as traveling mainly on foot if his/her rд is smaller than a

threshold (rthrd ). Because we do not have groundtruth for on-foot users, we can not set the threshold rthrd directly
based on the precision and recall of identified on-foot users. We set the threshold instead by analyzing how many
known private car or public transport users are mistaken as on-foot users. Fig. 9 shows the cumulative distribution
function of rд of labeled car/public transportation users and all users. Based on Fig. 9, we set rthrd = 2000m. We
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(a) Shenyang (b) Dalian

Fig. 9. CDF of rд of labeled auto/public transportation users and all users. (a) shows the results of Shenyang and (b) shows
the results of Dalian.

can see that with such rthrd , few users with known labels (private car or public transport) are taken as on-foot
users, compared to the relatively large proportion in all users. We acknowledge that this can only indicate the
accuracy of identified on-foot users in a very limited and indirect way, but it is the best way we can think of in
this situation.
Comparison with Census Data: After the user filtering, we feed the rest users into the trained model to

decide their main transportation modes. To validate the method’s performance at urban scale, we estimate the
proportion of car users in the whole population. The results are compared with the cities’ census data in Table 8.
The second to fourth columns are from census data published by the cities’ governments [23–25]. The fifth to
eighth columns are from our datasets and the inferred results. The last column is the error of the estimated
proportion of car users, which is 0.09 in Shenyang and 0.06 in Dalian. To some extent, the results indicate the
effectiveness of our method on the whole population.
Spatial Distribution: In Sec. 4.2, we identify users’ homes. In this experiment, we visualize the distribution

of car/public transportation users’ homes in the form of heatmap (Fig. 10 and Fig. 11), and we find that the
distribution is consistent with geography context information. As shown in Fig. 10 and Fig. 11, although the overall
pattern is similar, we highlight some differences between the distributions of car users and public transportation
users:

• Residents of upscale residential areas tend to travel by car. We identify several high-end residential areas
(rectangle A in Fig. 10 and rectangle B in Fig. 11). The intensity of car users in these areas is significantly
higher than that of public transportation users.
• The students accommodated in school tend to travel by public transportation. Rectangle B in Fig. 10 and
Rectangle A in Fig. 11 framed the locations of multiple colleges and universities. In China, almost all college
students live in school and do not have cars. They mainly take public transportation to go out.

In a nutshell, the accordance with census data and geography context suggests that CellTrans remains effective
at urban scale.

6.3 Scenario 2: Without Label Data
In Sec. 5.2, we present two methods to infer users’ main transportation modes when there are no labeled users
in the studied city: a clustering based method and transferred models from other cities. In this section, we will
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(a) Car Users’ Homes in Shenyang (b) Bus Users’ Homes in Shenyang

Fig. 10. Heatmaps of the distribution of (a) car users’ homes and (b) public transportation users’ homes in Shenyang. Area A
is one of Shenyang’s upscale residential areas, where there are many car users as shown in (a). In comparison, the intensity
for public transportation users is much lower. B is the location of a college, where the main residents are college students. In
this area, there are much more public transportation users than car users.

(a) Car Users’ Homes in Dalian (b) Bus Users’ Homes in Dalian

Fig. 11. Heatmaps of the distribution of (a) car users’ homes and (b) public transportation users’ homes in Dalian. There are
three universities located in area A, where the main transportation modes of residents are public transportation. There are
many high-end houses and apartments along the road covered by rectangle B. For the residents in area B, driving car is the
more common transportation mode than public transportation.

evaluate their performance. First, we discuss the parameter selection for k-means in Sec. 6.3.1. Then we compare
the performance of our methods with previous methods in Sec. 6.3.2.

6.3.1 Parameter Selection for k-means. We assess the accuracy of the clustering-based method utilizing the
labeled users as discussed in Sec. 5.2. To set the parameter k (the number of clusters in k-means) properly, we
observe how the upper bound of accuracy and the corresponding precision and recall vary with k . As shown in
Fig. 12, the upper bound of accuracy is low when k is very small, so are the corresponding precision and recall.
When k becomes larger, the three metrics all become higher, but the needed human efforts to infer the group
centers’ modes also grow. Based on Fig. 12, we set k = 4 for Shenyang and k = 6 for Dalian, because the accuracy
gain is minor when k is larger than these values.
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Table 9. Methods to infer main transportation mode.

Method Description

CellTrans: k-means Cluster users based on mobility features Sec. 4.2
CellTrans: Transferred model (Transfer) Trained on labeled users from other cities
Aggregation: bus station matching (Station) Trip information and bus station locations [19]
Aggregation: traveling time clustering (Cluster) Trip information [35]
Route matching (Route) Trips and navigation routes [27]

(a) Accuracy with k for Shenyang (b) Accuracy with k for Dalian

Fig. 12. X-axis is the number of clusters and y-axis is the corresponding accuracy, precision and recall.

6.3.2 Comparison with Previous Methods. If we want to survey users’ main modes in a city where there are no
labeled users, we present two options in Sec. 5.2: a clustering based method and transferred models from other
cities. In this section, we compare their performance with previous methods. The comparing methods are listed
in Table 9 and the results are shown in Fig. 13. For Shenyang, the model Transfer means the SVM model trained
on Dalian users and for Dalian, it is the SVM model trained on Shenyang users. The kernel we use is still radial
basis function. The three previous methods, Station, Cluster and Route are introduced before in Sec. 6.1.
The accuracy of our methods is higher than that of previous methods in both cities. The transferred model

achieves the best results among all the methods. This suggests that the relationship between users’ main
transportation modes and their mobility features is consistent in different cities. Station and Cluster do not depend
on the detailed velocity or acceleration information, which is almost impossible to extract from cellular data.
They only consider simple trip features like the origin, destination and traveling time. However, car trips and bus
trips are very similar concerning these features, which hold back these two methods to achieve high accuracy.
Route measures the distance between users’ records and the navigation transit/driving routes retrieved from

map service API (Amap [2] in our implementation). The reasons why it is not performing well are: (i) In a city
with developed public transportation system, the navigation routes of buses and metros are very similar to the
routes of driving car, especially for short distances. (ii) The irregular sampling of cellular data causes sparsity.
The intervals between consecutive records can be as long as several hours. Cellular data can not delineate the
detailed shape of trajectories due to these long blank intervals. (iii) The location error of cellular data can be
several hundreds of meters. With such large error, cellular data are unable to capture the small difference between
public transportation routes and driving car routes.
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(a) Shenyang (b) Dalian

Fig. 13. The performance of different unsupervised methods. The methods are summarized in Table 9. (a) shows the results
of Shenyang and (b) shows the results of Dalian.

In comparison, our methods consider the overall mobility features extracted from cellular data in a long period.
Although the information provided by cellular data is coarse-grained and sparse, the accumulation over time can
make up for cellular data’s disadvantages and offer the chance to infer users’ main transportation modes.

6.4 Feature Analysis
In this experiment, we analyze the importance and distribution of the features extracted in Sec. 4.2.

6.4.1 Rank Feature Importance. To find out the importance of features, we utilize the SVM with linear kernel,
whose performance (81% accuracy for Shenyang and 84% for Dalian) is close to the SVM with radial basis function
kernel. After fitting to data, the coefficients in linear SVM can reflect the importance of the corresponding features,
i.e., how much the feature contributes to separate the users into two classes [39].

In Fig. 14, the absolute values of the coefficients are shown in descending order. The meanings of each feature
can be found in Table 4. The larger the absolute coefficients, the more important the corresponding features are
to infer main modes. The results show that: (1) The number of distinct stay clusters, average speed and time of
trips, and the number of trips are important to separate users of different modes in both cities. (2) The convex
hull area of stays is important in Shenyang, but less important in Dalian. (3) The house price, radius of gyration,
the time to leave home and network access intensity are important in Dalian, but less important in Shenyang.
(4) The time to come back home, the average number of trips per day are not important in both cities.

6.4.2 Feature Value Distribution. We analyze the distribution of the mobility features among users with different
main modes. Some representative examples are shown in Fig. 15
• Some features have obviously different distribution between two modes, which depicts their discriminative
ability. For example, ncluster is the most discriminative feature in both cities. As shown in Fig. 15a, it has
different distribution between public transportation users and private car users. Private car users tend to
visit more places than public transportation users.
• Some features have slightly different distribution and their differentiating ability is not as strong as the
former ones. For example, Fig. 15c shows the distribution of avt . The separation of two classes on avt is
not as obvious as ncluster . This is consistent with the importance analysis in Sec. 6.4.1.
• Some features have similar distribution between different modes, but they still contain discriminating
information based on the analysis in Sec. 6.4.1. For example, rд is an important feature in Dalian, although
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(a) Shenyang

(b) Dalian

Fig. 14. The absolute coefficients corresponding to features, reflecting each feature’s importance. The error bar is the variance
over 5-fold cross validation. The color represents the sign of the coefficients. Blue means that the larger the feature, the
higher the probability that this user prefers public transportation. Green means the opposite.

as shown in Fig. 15e, the distribution is very similar for two modes. The reason may be that although
these features can not separate different modes individually, they are capable to do so combined with other
features. That is to say, their distribution conditioned on other mobility features is more discriminative
than their overall distribution.
• Lastly, some features contribute little to the differentiation of modes and naturally, they have very similar
distribution. For example, tback is the least important feature in both cities (Fig. 14). Its distribution is
indistinguishable as shown in Fig. 15f.

6.5 Vary Temporal and Spatial Granularity
In the following experiments, we change the temporal and spatial granularity of the MFR datasets artificially and
observe how the accuracy varies. We use the CellTrans with SVM and 5-fold cross-validation:
• Temporal Granularity: To change the data’s temporal granularity to a specific value дt , we examine
each record < ti ,pi > of a user in chronological order (ti is the time and pi is the location of the record). If
ti − ti−1 < дt , then record < ti ,pi > is discarded, otherwise we keep it and examine the next record. The
results are shown in Fig. 16a. The accuracy encounters a significant drop near 100 minutes. We think the
reason is that temporal granularity coarser than 100 minutes could entirely miss some traveling activities.
• Spatial Granularity: To change the data’s spatial granularity to a specific value дs , we examine each
record < ti ,pi > of a user in chronological order. If Dist(pi ,pi−1) < дs , then we set the location of the
ith record to be the same as the (i − 1)th record: pi ← pi−1. Otherwise we change nothing and examine
the next record. The results are shown in Fig. 16b. Compared with temporal granularity, the accuracy of
CellTrans decreases more smoothly when the spatial granularity becomes coarser.
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(a) Dalian, ncluster (b) Dalian, avt (c) Shenyang, avt

(d) Dalian, avv (e) Dalian, rд (f) Dalian, tback

Fig. 15. Feature distribution of car users and public transportation users.

(a) Temporal Granularity (b) Spatial Granularity

Fig. 16. Accuracy under different (a) temporal granularity and (b) spatial granularity. We manually change the temporal and
spatial granularity of the data, and observe how the accuracy of CellTrans varies.

With these experiments we explore the lower bound of the granularity that CellTrans needs. The results suggest
that CellTrans can work with data whose spatiotemporal granularity is even coarser than cellular data like MFR.

7 DISCUSSION

7.1 Lessons Learned
Based on the results of CellTrans, we learned several valuable lessons:
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• The event-driven property of cellular data causes the irregular temporal sampling, which is a drawback
for the study of human mobility. From another point of view, this can be an advantage that enable us to
extract features about users’ living patterns.
• Main transportation modes are not only related to users’ trips, but also to their stays. Although inferring
main transportation modes based on trips’ modes does not work with coarse-grained cellular data, we can
infer them based on users’ general mobility features.
• The inference model for main transportation modes does not need a large number of training data, but it
does need a long observation period (longer than 21 days). It is costly to collect groundtruth of many users,
but it is easy for cellular dataset to cover a period longer than 3 weeks. So inferring main transportation
modes with cellular data is a practical solution for urban-scale survey.
• The relationship between main transportation modes and mobility features is stable in different cities. A
model trained in one city can be applied to other cities without much sacrifice of accuracy.

7.2 Limitation
• Other transportationmodes: In this paper, we do not consider transportation modes like running, biking,
taxi and so on. The reasons are: (i) We do not have the groundtruth for these transportation modes in our
dataset. (ii) We focus on users’ main transportation modes. People occasionally take taxies or run to go to
some places, but few people take them as their main transportation modes. (iii) Driving car and taking
public transportation are two most important transportation modes in urban lives. (iv) Cellular data localize
users at cell granularity and the records are irregularly sampled. So for short-distance modes like walking,
biking and running, we think it is almost impossible to differentiate them since their minor differences can
not be reflected in cellular data.
• Fine-grained public transportation:We do not differentiate buses and subway/metro. They are included
in public transportation. The main reason is that we do not have find-grained label data. However, we think
CellTrans has the potential to deal with more fine-grained modes:
– Current mobility features are possible to differentiate buses and subway/metro. For example, sub-
way/metro usually have a higher speed than buses. Average speed of trips can capture this difference. The
cellular signal is usually weak on subways and this can be characterized by Network access intensity.

– Some new features can be added to enhance CellTrans to differentiate buses and subway/metro. For
example, subway and metro have fixed stations. The closeness to these stations can be incorporated
to identify subway/metro trips from others. Additionally, the high speed and underground may cause
unique tower switch patterns.

7.3 Applications
• For mobile phone service providers:Mobility patterns and transportation modes affect the cell tower
handover frequency, paging activities, path switching, etc. So inferring the transportation mode of cellular
users is important for service providers to improve their services. Knowing users’ main transportation
modes can also help with user profiling: (i) Car ownership can reflect a user’s economic status, which is one
of the most critical factors in precision marketing. (ii) the transportation mode can help with understanding
users’ cellular traffic needs. When people are on buses, they usually use phones more often to kill time.
• For governments: Transportation mode information tells us the transportation needs of citizens, which
is crucial to city planning and transportation management. CellTrans can also be integrated with the travel
demmand forecasting models. Travel demand forecasting system considers multiple aspects about users’
travel behaviors, including car ownership, trip frequency, destination choice, route choice and mode choice.
CellTrans can support current travel demand forecasting in following aspects:
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Table 10. Comparison with Related Work. Level considers whether the method focuses on trips’ transportation mode or
users’ main transportation mode. Car&Pub means if the method differentiates between car and public transportation. TW
represents for Time Window

Level Urban scale #Labeled users Data (#Users) Car&Pub.

[5, 49, 51] Trip No 182 GPS (182) Yes
[34] Trip No 125 GPS and user profiles Yes
[4, 12, 14, 18, 20, 32] TW No 3-20 Sensor data (3-20) Yes
[33] TW No 224 Sensor data (224) Yes
[19] Trip Yes 0 Cellular and bus data (unknown) Only Pub.
[35] Trip No 0 Cellular data (one million) Yes
[27] Trip No 0 Cellular data (5405) Yes
[41] Trip No 500 Cellular (500) No
CellTrans Main Yes 2,589 Cellular data (three million) Yes

– CellTrans can provide a priori probability distribution of users’ mode preference. This distribution can
be integrated into current mode predicting models.

– The results of CellTrans can be aggregated at regional level to provide the transport mode profile of the
region. This profile can be used in inter-region traffic predicting.

– Car ownership is closely related to the user’s main transport mode. If a user’s main transport mode is
private car, he/she is very likely to have a car.

7.4 Privacy Protection
The cellphone data are collected by cellular service providers, and we access the data as academic collaborators.
By signing cellular service contracts, all the cellphone users consent that their metadata will be used to analyze
how they use cellphone infrastructures for performance profiling, anomaly detection, better services, etc. As
discussed in Sec. 7.3, CellTrans can help providers improve their services for cellphone users.

While the analysis of cellular data has great potential for social benefits, we must take active actions to protect
users’ privacy: (i) All users’ IDs have been hashed into random yet unique identifiers by the cellular service
providers’ engineers who did not participate in this work. (ii) The original data were never moved out of our
research facility, no data access to the personnel not related to this project. (iii) We only process the data fields that
are useful in this project, and drop others for minimal exposure. (iv) The final results are the main transportation
modes of users. The results do not contain the specific places that users visit. This paper is a part of an industry
collaborative project within our university, the paper publication with the real-world data-driven experiments
and results is allowed.

8 RELATED WORK
Our work is directly related to previous works that infer transportation modes from heterogeneous data sources
and is inspired by the various applications of cellular data in urban sensing. So we reviewed the related works
from the following two aspects:

8.1 Transportation Mode Inference
Understanding citizens’ transportation mode preference is beneficial to a range of applications. Decades ago,
questionnaires were themainmeans to gather information about users’ transportationmodes. Then the emergence
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of GPS-equipped devices provides a convenient and detailed way to collect users’ location information. Thus
many researchers study how to infer the transportation modes of GPS trajectories. For example, some works
extract velocity related features and feed them into supervised models [31, 49, 51], Wang et al. consider both
mobility and socioeconomic features, and some works design deep learning models to study transportation
modes: Dabiri and Heaslip devise a CNN model for mode inference and Song et al. utilize LSTM for the prediction
and simulation of transportation modes. Besides GPS, other sensors like accelerators, gyroscopes and so on are
also used to infer users’ real-time transportation modes with different methods [4, 12, 14, 18, 20, 32, 33].

Nevertheless, these methods are limited to a small number of users because of the difficulty of data collection.
In recent years, cellular networks provide new opportunities to collect large scale location information at low
cost, and several works try to infer trips’ transportation modes from cellular data [19, 27, 35, 41]. However, the
low spatiotemporal granularity makes it failed to infer users’ main modes by first analyzing users’ trips’ modes.
In this paper, we design a new framework to survey users’ main transportation modes at urban scale by utilizing
the mobility features extracted from cellular data.
The comparison of related works is summarized in Table 10. We evaluate CellTrans with the largest dataset

and most groundtruth users.

8.2 Urban Sensing with Cellular Networks
The high penetration and the ubiquitous coverage make cellular networks an ideal infrastructure for compre-
hensive and large scale urban sensing. Calabrese et al. give a thorough survey in this area. In recent years, with
more and more accessible datasets, new methods and new applications have come forth continuously: Fang et al.
model urban population with multiple cellular networks to compensate for the bias of a single network. Isaacman
et al. identify the important places for users based on cellular data. There are also some works studying the
fundamental laws of human mobility [11, 21, 29]. Besides human mobility, researchers also consider the variation
of traffic volume at urban scale, e.g., Wang et al. predict the traffic volume at tower level, Wang et al. study the
urban mobile traffic patterns, and Ferrari et al. try to detect the special events in the city by analyzing cellular
traffic. Additionally, mobile phones have been widely used in mobile crowd sensing [46, 47]. Our work profiles
users’ main transportation modes at urban scale, which extends the applications of cellular data in urban sensing.

9 CONCLUSION
In this paper, we present CellTrans, a novel cellular network based framework to survey users’ main transportation
modes (public transportation or private car) at urban scale. We devise techniques to extract mobility features from
noisy MFRs that are pertinent to users’ transportation modes. To make CellTrans more practical and generalizable,
we consider different application scenarios and design solutions correspondingly. We evaluate the performance of
CellTrans on two large-scale MFR datasets from two metropolises in the northeast of China, which cover 3 million
users. We carry out comprehensive experiments to evaluate the performance of CellTrans quantitatively and
qualitatively. The experimental results show that CellTrans can achieve high accuracy with or without labeled
users in the studied cites, and CellTrans remains effective when applied at urban scale to the whole population.
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