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Abstract—Understanding customer mobility patterns to com-
mercial districts is crucial for urban planning, facility manage-
ment, and business strategies. Trade areas are a widely applied
measure to quantify where the visitors are from. Traditional
trade area analysis is limited to small-scale or store-level studies
because information such as visits to competitor commercial
entities and place of residence is collected by labour-intensive
questionnaires or heavily biased location-based social media data.
In this paper, we propose CellTradeMap, a novel district-level
trade area analysis framework using mobile flow records (MFRs),
a type of fine-grained cellular network data. CellTradeMap ex-
tracts robust location information from the irregularly sampled,
noisy MFRs, adapts the generic trade area analysis framework
to incorporate cellular data, and enhances the original trade area
model with cellular-based features. We evaluate CellTradeMap on
a large-scale cellular network dataset covering 3.5 million mobile
phone users in a metropolis in China. Experimental results show
that the trade areas extracted by CellTradeMap are aligned with
domain knowledge and CellTradeMap can model trade areas
with a high predictive accuracy.

I. INTRODUCTION

The ubiquity of mobile devices and the development of
cellular networks have generated unprecedented telecommuni-
cation big data. There have been more mobile devices than hu-
mans worldwide [1]. These mobile devices frequently access
the Internet via 3G/4G/5G networks for various applications
including news browsing, instant messages, mobile videos,
mobile games, etc. It is predicted that the annual mobile
Internet traffic will exceed half a ZB (1021Bytes) by 2021 [2].

The tremendous amounts of cellular network records con-
tain precious business values. Cellular data have long served
as approximated locations of mobile users at the granularity
of cell towers [3], [4]. Over the past decade, researchers have
exploited cellular data to mine customer mobility behaviour
for various business strategies and applications such as mo-
bile advertising [5], optimal store location planning [6] and
commercial activeness prediction [7].

One expressive, widely adopted approach to characterize
customer mobility pattern is trade areas. A trade area is
“a geographically delineated region containing potential cus-
tomers”, which quantifies the distributions of visitors to a
store or a commercial district [8]. In other words, the trade
area of a store or a commercial district depicts the origins
(i.e., home locations) of visitors and the corresponding visit
probabilities. Understanding where the visitors come from and

(a) (b)
Fig. 1. (a) Spatial distributions of MFRs in one hour. (b) Trade areas of
all commercial districts in a city. Red circles are commercial districts. The
contour maps around circles are the corresponding trade areas.

their choices of competitive stores or commercial districts is
vital to optimize market management and strategies.

Despite its importance, trade area analysis has long been
considered expensive and time-consuming. The major burden
is the efforts to estimate the number of visitation to a store
or commercial district and all of its competitors, as well as to
collect home information of the visitors. Traditionally, such
information is manually collected from questionnaires and
surveys. Response rates are also relatively low [9].

Pioneer studies [6], [9], [10] propose to utilize location-
based social media as an alternative data source. Check-ins on
social media are easier to collect at large-scale than surveys,
and prove effective in profiling trade areas of popular retail
stores [10]. However, it is difficult to infer place of residence
and obtain comprehensive visitation information of competitor
businesses from the limited and biased check-in data [11].
Furthermore, it is difficult to aggregate the trade area of stores
to obtain the trade area of commercial districts without bias.

To fill the void of cost-effective, urban-scale, comprehensive
trade area analysis for commercial districts, we explore mobile
flow records (MFR), a fine-grained cellular network data
source that has recently attract much research attention [12].
MFRs are system logs of cellular network that describe the
Internet access behaviour of phone users. The wide spatial
coverage (e.g. 3.5 million mobile phone users in a metropolis)
and high time resolution (e.g. 4-minute sampling rate) make
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them suited for comprehensive district-level trade area anal-
ysis. In comparison, effective check-ins may be sparse and
contain data for limited numbers and types of stores (e.g. 4
stores in New York with 0.1 check-in per user per day. [10]).

We propose CellTradeMap, a MFR-based framework to
delineate and model trade areas for commercial districts. We
base our design upon a large-scale MFR dataset covering 3.5
million anonymized mobile phone users in a metropolis of
China within one week. Through measurement studies, we
investigate the irregular sampling and frequent base station
switch problems of the MFR data. To tackle these challenges,
we design a novel and practical pipeline to extract robust lo-
cation information in the form of stay points from raw MFRs.
We also adapt the generic trade area analysis framework [13]
to incorporate this cellular data, and improve the accuracy of
the widely adopted trade area model [8] by adding MFR-based
metrics and L1−norm. Fig. 1a shows the spatial distribution
of our MFR dataset within an hour, and Fig. 1b illustrates the
trade areas of all the commercial districts in the city derived
from CellTradeMap in the form of contour maps.

We summarize the main contributions of this work below.
• To the best of our knowledge, this is the first work that

utilizes flow-level data of cellular networks to profile and
model trade areas for commercial districts. It offers a new
cost-effective data collection methodology for urban-scale
district-level trade area analysis.

• We design practical processing techniques to extract stay
points and home locations of users from raw MFR data.
Our solution serves as a generic pipeline to robustly
derive location information from flow-level cellular data
for mobility-related studies.

• We adapt the general trade area analysis framework to
incorporate MFR and conduct urban-scale analysis on
an MFR dataset. Experiments show that CellTradeMap
profiles trade areas that are explainable by prior knowl-
edge, reveal the important metrics for commercial at-
tractiveness, and improves the predictive accuracy of the
conventional trade area model with the help of L1−norm
and MFR-based metrics.

In the rest of this paper, we review related work in Sec. II,
introduce our dataset and CellTradeMap framework in Sec. III,
present the details of the three modules of CellTradeMap in
Sec. IV, Sec. V and Sec. VI, and evaluate its performance in
Sec. VII. Finally we conclude this paper in Sec. VIII.

II. RELATED WORK

Our work is inspired by the emerging trend on urban sensing
with cellular networks, with a focus on trade area analysis. We
review the most relevant studies below.

A. Urban Sensing with Cellular Networks

Due to the deep penetration and the ubiquitous coverage,
cellular networks are ideal for large-scale and comprehensive
urban sensing [12], [14], [15]. Researchers have exploited
different types of cellular data for various urban sensing
applications.

Aggregated cellular network traffic has been widely applied
to urban cellular traffic monitoring and management. Ferrari et
al. [16] divide the city into grids and aggregate cellular usage
data in each grid to detect special events. Wang et al. [17]
aggregate cellular network usage data at the cell tower level
to predict future cellular traffic in the city.

Call detail record (CDR) data records a time stamp and
the connected cell ID in case of a phone call or a message.
CDR data contains information about the long-term mobility
and have been used in studying the patterns and fundamental
laws of human mobility [3], [18], [19]. CDR data can also
be integrated with public transit data to derive more accurate
human mobility patterns [20].

MFR data are system logs that are sampled whenever a user
accesses the Internet. Previous studies have harnessed MFR for
fine-grained cellular traffic characterization [21] and human
mobility modeling [4], [22]. Our work is the first to devise
techniques for MFR to infer the locations of residence and
visits to commercial districts for trade area analysis.

B. Trade Area Analysis

Trade area analysis is an urban sensing application that
answers questions such as “how faraway did the customers
travel” and “what are the impacting factors to attract cus-
tomers” to a store or a commercial district. These questions
are important for city planning and understanding consumer
behaviour [23]. Essential in trade area analysis is how to
estimate the number of visitation to stores or commercial
districts. Traditional methods [24], [25] use surveys to estimate
the number of visits.

User check-ins on social networks emerge as a low-cost
alternative to estimate the number of visitation [6], [9], [10].
Wang et al. [10] characterize where the customers of four
popular stores come from exploiting check-in data of the four
stores in New York City. Wang et al. [9] highlight the effects
of different customer sample sets on trade area analysis by
investigating check-in data of five major commercial districts
in Beijing, China. However, check-in data suffers from the
sparsity and bias problems [10], making them unfit for com-
prehensive trade area analysis at district level. This also limits
their ability to quantify the metrics’ impact on trade areas.

We conduct trade area analysis with MFRs, which have
wider spatial coverage and finer temporal resolution than
check-ins, and design processing techniques dedicated to ex-
tract robust location information from MFRs.

III. OVERVIEW

This section presents our mobile flow record dataset and the
overall framework of CellTradeMap.

A. Mobile Flow Record Dataset

Mobile flow records (MFRs) are fine-grained logs of cellular
networks. Each MFR consists of a user ID, a time stamp, the
base station ID, the host and the Uniform Resource Identifier
(URI) of the request, as well as other flow information like
upload/download bytes and round-trip time (o2r/r2o and rtt in
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Fig. 2. Overview of CellTradeMap.

Table I). Our MFR dataset is recorded by a major carrier in a
Chinese metropolis, covering an area about 10 thousand km2

over one week and our analysis focuses on the 30km× 30km
urban area. The dataset contains 17 billion anonymized MFRs
from 3.5 million mobile phone users.

The MFR dataset covers a wide spatial range and has a
high time resolution. In comparison, the check-in dataset used
in [10] only contain data for 4 stores in New York City (around
100 check-ins for each store). The average number of records
per user per day of our MFR data is 694 and the average
interval is shorter than 4 minutes. In contrast, the average
number of check-ins per user per day in [10] is only 0.1.
Similarly, the average interval between consecutive records of
one user in the CDR dataset used by [19] is 8.2 hours.

Together with other data sources such as Points of Interest
(POIs), MFRs hold potential to comprehensively analyze the
trade areas for commercial districts in the entire city.

B. CellTradeMap Framework

CellTradeMap is a new pipeline to characterize and predict
the trade areas for commercial districts with MFRs. It consists
of three major functional modules (see Fig. 2).

• MFR Processing. This module extracts stay points and
durations of mobile phone users from raw MFRs. Stay
points and durations are the basis to identify visits to
commercial districts and locations of residence, which are
traditionally obtained by expensive and time-consuming
surveys. Recent proposals exploit check-ins from social
media to count visitations [6], but such data is prone to
sparsity and bias [10]. Techniques to extract stay points
from GPS traces [26], [27] cannot be applied to MFRs
because of MFRs’ unique characteristics (Sec. IV-A).
We design novel processing pipeline including switch
rectification, burst separation and stay points extraction,
to robustly extract location and visitation information
from MFRs in Sec. IV.

• Trade Area Delineation. This module visualizes the
trade areas e.g., with contour maps of visit probabilities
(see Fig. 1b). We harness POI clustering to identify com-
mercial districts, infer home locations of visitors based
on spatiotemporal patterns of MFRs, and estimate visit

(a) (b)
Fig. 3. Switches to (a) a remote base station and (b) a nearby base station.
The green (bigger) dots are the user’s connected stations at the corresponding
time, and the grey (smaller) dots are all stations nearby.

probabilities to commercial districts (Sec. V). We also
explain the different patterns of trade areas (Sec. VII-B2).

• Trade Area Modeling. This module associates contexts
such as the attractiveness of a commercial district to its
visit probability. The Huff gravity model [8] is widely
used to predict the trade area of commercial districts.
However, there is no consensus on a unified definition of
the attractiveness. We extract new metrics from MFRs
and POIs to quantify the attractiveness, evaluate each
metric’s contribution to attractiveness and improve the
accuracy of the original Huff model (Sec. VI).

In the next three sections, we detail each of the three functional
modules in sequel.

IV. MOBILE FLOW RECORD PROCESSING

This section presents the pipeline to robustly extract stay
points of mobile phone users from MFRs.

A. Challenges

1) Frequent Base Station Switches: MFRs are expected to
approximate users’ location by the connected base station’s
location. In practice, the phone is not always connected to the
nearest base station because of the overlap of base stations’
service areas [28]. Sometimes a phone may suddenly connect
to a remote base station, exchange several packets and switch
back within a short time. Fig. 3a shows one example of such
base station switches. The user’s phone switches to a base
station nearly 6km away and then back to a nearby base station
within 10 seconds.

Even when a user stays at the same place, his/her phone may
switch among base stations nearby (Fig. 3b). Consequently, it
is difficult to decide whether a user is actually moving or still.

2) Bursty Sampling: Another characteristic of MFRs is
their bursty sampling. This is because mobile phone users
often access data services in a bursty and intermittent way [29],
i.e., intensive data usage within a short time. For example, mo-
bile Internet access activities such as watching online videos
usually consume cellular data intensively and continuously,
resulting in a large volume of MFRs. However, unless users
are addicted to their phones, these heavy-traffic activities tend
to be separated by intervals with few Internet accesses.
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TABLE I
EXAMPLE OF MOBILE FLOW RECORD.

User Time Station Host URI o2r Bytes r2o Bytes RTT Open Reason Close Reason ...
user1 t1 s1 www.example.com /index/... 614 418 53 tcpSyn finClose ...

... ... ... ... ... ... ... ... ... ... ...

Fig. 4. Bursty sampling of MFRs. Points on each horizontal line represent
the occurrences of one user’s MFRs. One of User 6’s bursts is zoomed in at
the top.

Fig. 4 illustrates the bursty sampling of MFRs. Points on
each horizontal line represent the occurrences of a user’s
records in one day. Point (t, useri) means useri has a record
at time t. Most users have one or two intervals of dense records
separated by hours of blank except for user 3, who seems to be
a heavy mobile phone user. One of User 6’s “bursts” is zoomed
in at the top of Fig. 4. The records are sampled at a high
frequency (from 0 times/min to 86 times/min, 7 times/min
on average). The bursty sampling causes redundancy in the
dense intervals, and lead to sparsity during blank intervals.

B. Base Station Switch Rectification

This subsection deals with the base station switch problem
in MFRs. We treat switches to remote stations and switches
to nearby stations differently.

1) Switches to Remote Stations: Switches to remote stations
can cause wrong location records in MFRs (Fig. 3a). They are
harmful to stay point extraction because they may split a stay
into fragments, which do not qualify as a “stay” individually.
We first sort each user’s MFRs by time, and extract a sequence
{pi =< location, timestamp >=< pi.loc, pi.T >}, where
pi.loc is the location of the base station that the phone connects
to. Like [30] dealing with station switch in CDR, we take a
record pi as a remote station switch if:

Dist(pi−1.loc, pi.loc) > Dnoise

pi.T − pi−1.T < ∆Tnoise
(1)

where Dist is the Euclidian distance function. We do not use
a speed threshold directly because nearby switches can also
cause high speed as shown in Fig. 3b.

We set the threshold Dnoise by analyzing the URI in MFRs
(see Table I). We observe that some location-based services
embed users’ GPS in the request URI, which can be seen as the
actual locations of users. Fig. 5a shows the distance between
users and their connected stations based on these records. For

over 90% samples, the distance is below 1.8km, so we set
Dnoise to 2 × 1.8 = 3.6km. Considering the speed limit of
a highway is 120km/h in China, we set the time threshold
∆Tnoise to 3.6/120× 3600 = 108s.

2) Switches to Nearby Stations: Nearby base station
switches do not incur obviously wrong location records and
can be considered as normal fluctuations of cellular localiza-
tion. We propose techniques to extract stay points that are
robust to variations of locations caused by nearby base station
switches in Sec. IV-D.

C. Burst Separation

To handle the uneven sampling of MFRs, we divide the
sequence of MFR logs of a user into multiple bursty inter-
vals and sparse intervals, and process them differently when
extracting stay points and durations (see Sec. IV-D).

A bursty interval is defined as Ib =< p1, p2, ..., pn >, where

pn.T − p1.T > ∆Tstay

pi+1.T − pi.T < ∆Tbursty (i = 1, 2...n− 1)
(2)

Each interval between two neighbouring bursty intervals is a
sparse interval (denoted by Is).

∆Tbursty is set such that a user stays at the same location
during ∆Tbursty with a high probability. We study the distri-
bution of users’ return time, i.e., the time between two visits
to the same place. A return is identified by:

< p1, p2, ..., pi, ..., pn >

s.t. p1.loc = pn.loc,Dist(p1, pi) > Dnoise

(3)

Then return time is pn.T − p1.T . As shown in Fig. 5b, 90%
of return time is over 1.7 hours. If there are two consecutive
records with the same location and the interval is below 1.7
hours, we can infer that the user stays at the same location
with high confidence. So we set ∆Tbursty to 1.7 hours.

The other threshold ∆Tstay is the minimum length of a
bursty interval. We set it to 20 min and defer the details to
stay point extraction (Sec. IV-D).

Note that the MFRs within a bursty interval can be redun-
dant. For example, over 82% of consecutive records in the
inset of Fig. 4 are within 5 seconds. Due to the speed limit of
humans and the continuity of movement, these records contain
the same location information of the user and can be ignored
to speed up data processing. A record is considered redundant
if it is within 10 seconds with its predecessor and has the same
location. As a result, 69% of records are filtered out.

D. Stay Point Extraction

We extract stay points from users’ MFRs to identify users’
homes and their visits to commercial districts. A stay point
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Fig. 5. Cumulative Distribution Function of (a) distance between users and their connected base stations, (b) return time (The interval between users’ leaving
and coming back to the same place), (c) station switch range during stay.

approximates the location of a mobile phone user when he/she
stays in a geographic neighbourhood over a time threshold. A
stay point is a more robust estimate of a user’s location than the
location information contained in each MFR, because a mobile
phone can switch among nearby base stations even when the
user stands still. Another advantage of using stay points is that
they indicate semantic meanings such as visiting commercial
districts, resting at home and working at company [26], [27].

We determine stay points as follows. First we split a user’s
MFRs into bursty intervals ({Ib}) and sparse intervals ({Is})
as Sec. IV-C. Then stay points are extracted from each bursty
interval Ib =< p1, p2, ..., pn >. We define the neighbourhood
of a record pi as a circle centered at pi.loc with radius Dnbh.

Specifically, we first find the continuous records when a
user stays in pi’s neighbourhood, i.e.,

< ps, ..., pi, ..., pe >

s.t. Dist(pj .loc, pi.loc) <= Dnbh ∀s ≤ j ≤ e
Dist(ps−1.loc, pi.loc) > Dnbh

Dist(pe+1.loc, pi.loc) > Dnbh

(4)

Then the time the user spends in pi’s neighbourhood is
pi.st = pe.T − ps.T . We select pi with the maximum pi.st
as pmax. If pmax.st ≥ ∆Tstay, then we extract a stay point
sp = (loc, arvT, levT ):

sp.loc =
e∑
k=s

pk.loc/(e− s+ 1)

sp.arvT = ps.T sp.levT = pe.T

(5)

where sp.loc is the center of the stay point, sp.arvT and
sp.levT are the arrival and leaving time of sp, respectively.

After removing Isp =< ps, ..., pmax, ..., pe > from Ib, we
update each remaining record’s pi.st which are affected by the
removal of Isp. Then we repeat the above process to find other
stay points until the maximum pi.st is shorter than ∆Tstay.

For sparse intervals, we only extract stay points at night and
abandon the records at daytime. Note that the time between
two records in sparse intervals can be larger than ∆Tbursty =
1.7 hours, during which a return may occur (Fig. 5b). But if the
sparse interval is at night, it is highly likely that consecutive
records with the same location is a stay. This will help us
extract home locations robustly.

The threshold ∆Tstay is the minimum time length of a stay.
We set it to 20min because it suffices to qualify as a visit to
commercial districts. Bursty intervals shorter than ∆Tstay will
not contain stay points, so ∆Tstay is also used in Sec. IV-C
as the minimum length of bursty intervals.

We set the other threshold Dnbh by analyzing users’ distri-
bution of connected stations during stay. For GPS trajectories,
Dnbh can be set manually to an appropriate value (200m [27]).
But for MFRs, owing to the low spatial granularity and nearby
station switches, the fluctuation range of connected stations
is different from the range of users’ wandering. From the
records with GPS values (Sec. IV-B), we extract over 10
thousand stay points by the method of [27]. The distribution
of station fluctuation range is shown in Fig. 5c. As is shown,
about 60% stay points only have one station due to the low
spatial granularity. Also, users’ wandering can cause several
kilometers of station fluctuation and 90% of them are below
1.763km. So Dnbh is set to 1.763km.

V. TRADE AREA DELINEATION

In this section, we utilize the stay points and durations
extracted in Sec. IV-D to infer the trade areas of commercial
districts in the city. The trade area of a commercial district can
be quantified by the visit probabilities of residents from dif-
ferent areas. We explain how to identify commercial districts
from POIs (Sec. V-A) and infer home locations from MFRs
(Sec. V-B). Then we can easily calculate the probabilities that
residents visit commercial districts (Sec. V-C).

A. Commercial District Identification
We use the clustering algorithm proposed by [7] to ag-

gregate the POIs with annotations of shopping malls or
commercial streets into commercial districts. First, different
seeds are selected as centers to initialize the clusters. Then
other POIs are gradually assigned to their closest cluster
unless the distance is greater than a threshold. By selecting a
proper threshold (evaluated by the Silhouette Coefficient [31]),
we obtain 52 commercial districts. Each commercial district
covers the convex hull of the POIs in the cluster.

B. Home Location Inference
Previous studies on human mobility indicate that people’s

movement exhibits high regularity [3], [19], and people’s
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activities are usually around a few key locations such as
home and work [32]. Instead of clustering a user’s raw
location records directly [10], we cluster a user’s stay points
to identify the important places (like home) in his/her lives,
because stay points are more robust and contain more semantic
meanings like resting at home. The clustering algorithm we
adopted is DBSCAN [33]. Assume a user’s stay points are
{sp1, sp2, ..., spn} and after clustering, we find m clusters
{c1, c2, ..., cm}. For each cluster ci:

ci.st =
∑
sp∈ci

(sp.levT − sp.arvT )

ci.loc =
∑
sp∈ci

sp.loc× (sp.levT − sp.arvT )/ci.st
(6)

where ci.st is the sum of stay time of all stay points in the
cluster and ci.loc is the centroid of all stay points in the same
cluster weighted by their stay durations. Then the cluster with
longest stay time at night (20:00 to 8:00) is considered the
home location of the user.

C. Visit Probability Estimation

We divide the city into 1km × 1km areas (30km × 30km
totally) and aggregate the homes of mobile phone users to
each area. A stay point in a commercial district is counted as
a visit if it is between 18:00 and 23:00 on weekdays or 9:00
and 23:00 at weekends, i.e., the most common shopping time
(The time window can be adjusted due to different analysis re-
quirements). The probability Pij for residents in area i to visit
commercial district j is calculated as Pij = Cij/

∑Ni

k=1 Cik,
where Cij is the number of visits from area i to district j
and Ni is the number of commercial districts. We can then
plot the contour maps of visit probabilities or heatmaps of
visitors’ homes to visualize the trade areas of commercial
districts (Sec. VII-B2).

VI. TRADE AREA MODELING

This section investigates the impacting factors on trade areas
of commercial districts based on the Huff model.

A. Basics on Huff Model

The Huff model [8] has been widely used for evaluating
business geographic decisions including defining and ana-
lyzing trade areas. It models the visit probabilities from
residential areas to commercial districts as below:

Pij =
Uij∑Ni

k=1 Uik
(7)

where Pij is the probability that residents in area i visit
commercial district j, Ni is the number of commercial dis-
tricts, and Uij is the utility of commercial district j to area i.
Specifically,

Uij = (
H∏
h=1

Aγhhj )D
λ
ij (8)

where Ahj is the hth metric of the attractiveness of com-
mercial district j and γh is the sensitivity parameter of Pij

to Ahj . Dij is the distance (travel time) between area i and
commercial district j with a negative sensitivity parameter λ
to depict the distance decay effect.

We have calculated Pij from MFRs in Sec. V-C. The travel
time Dij can also be easily obtained via map services such as
the Baidu Map API. Below we describe how to determine the
attractiveness Ahj and the sensitivity parameters.

B. Attractiveness Determination

There is no consensus on the definition of attractiveness
in the Huff model. By default, the attractiveness is set to be
the square footage [9]. To improve the accuracy of the Huff
model, we propose three categories of metrics to quantify the
attractiveness of a commercial district.

1) Commercial Entity Metrics: The amounts and diversity
of commercial entities in a district are important metrics
that affect the attractiveness. For commercial district j, the
numbers of shopping POIs (m1), restaurant POIs (m2) and
entertaining POIs (m3) are counted as the commercial entity
metrics. To assess the diversity of entities, entropy measure
(m4) from information theory is applied to the frequency of
commercial POI types. The higher the entropy is, the more
heterogeneous the commercial entities are.

2) Urban Facility Metrics: The attractiveness of a commer-
cial district is not only related to commercial POIs, but also
others like parking lots (m5), scenic spots (m6), bus stations
(m7), subway stations (m8) and life services (m9). They reflect
the transportation accessibility and the services a district can
provide. The numbers of these POIs are collected as the urban
facility metrics.

3) Human Metrics: The population density and the incom-
ing flow may have an impact on the trade area of a commercial
district. Based on the locations of homes inferred from MFRs,
we can estimate the population of an area. The population
densities in 5km (m10), 5˜10km (m11) and 10˜15km (m12)
range around a commercial district are extracted. From MFR,
we also get the incoming flow (m13) for each commercial dis-
trict, which excludes the residents in the commercial district.

All the three categories of metrics are aggregated into a
vector to represent the attractiveness of a commercial district:
(A1j , A2j , ..., AHj) = (m1,m2, ...,m13) As we will show in
Sec. VII-C1, human metrics such as incoming flows are vital to
quantify the attractiveness, which are difficult to obtain without
using fine-grained cellular network data such as MFRs.

C. Huff Model Fitting

Substitute Eq.(8) into Eq.(7) and apply the following trans-
formation, Eq.(7) can be transformed into a linear form:

log(
Pij

P̃i
) =

H∑
h=1

γh log
Ahj

Ãh
+ λ log

Dij

D̃i

= W · E

W = (γ1, ..., γH , λ)

E = (log
A1j

Ã1

, ..., log
AHj

ÃH
, log

Dij

D̃i

)ᵀ

(9)
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where P̃i, Ãh and D̃i are respectively the geometric mean of
Pij , Ahj and Dij over all commercial districts that residents
in area i visited.

To automatically select the more relevant metrics of attrac-
tiveness, we apply L1 − norm to the solution of Eq.(9):

Ŵ = arg min
W

{β‖W‖1 +
1

2n
‖log(

Pij

P̃i
)−W · E‖22} (10)

where n is the number of samples and β is the weight of L1−
norm. It has been shown that L1 − norm can bring sparsity
to solutions that can be used to select effective metrics [7].

Once we obtain the value of W , we can analyze how much
each metric contributes to the trade area of a commercial
district (evaluated in Sec. VII-C1), and predict the trade areas
of other commercial districts (evaluated in Sec. VII-C2).

VII. EVALUATION

This section presents the evaluations of CellTradeMap. Due
to the lack of ground truth on the actual locations of mobile
phone users, it is difficult to evaluate the accuracy of the MFR
processing module. Hence we mainly assess the performance
of CellTradeMap on trade area delineation and modeling.

A. Experimental Settings

We use the same MFR dataset as in Sec. III-A. Our POI
dataset is collected through Baidu Map API, which contains
560 thousand POIs.

The MFR dataset is stored in a Greenplum database, which
is an open-source and massively parallel processing data
platform. The trade area visualization part is implemented
with d3.js and mapbox. The other parts of CellTradeMap are
implemented in Python3.6, running on a CentOS 6.8 server
with Xeon E5 processor and 256 GB memory. The sampled
data and code are available upon request to the corresponding
author.

B. Performance of Trade Area Delineation

In this series of experiments, we evaluate the accuracy of
CellTradeMap on home location inference and analyze the
trade areas extracted from MFRs.

1) Accuracy of Home Location Inference: In this experi-
ment, we compare the distribution of homes inferred by Cell-
TradeMap with the census data published by the government
for each administrative district. We evaluate the accuracy at
the administrative district level rather than for each individual
because we do not have access to the home information of
each individual mobile phone user. To get robust results, we
only use the users who have more than 4 days’ records.

Fig. 6a plots the population of residents in each administra-
tive district estimated by CellTradeMap (i.e., whose homes are
located in the district) and that obtained from governmental
census data. We observe a strong linear correlation (r = 0.90)
between the estimated population and the actual population in
each administrative district. The only two outliers are district
A, a suburban area, and district B, where the government
resides. The deviation of these two points may be due to

urbanization. The linear correlation implies almost unbiased
sampling of residents among different administrative districts.
Consequently, the trade areas delineated by CellTradeMap tend
to be comprehensive and unbiased.

2) Visualization of Trade Areas: In this experiment, we
calculate the visit probabilities of residents to each commercial
district, and plot the (i) contour maps of visit probabilities and
(ii) heatmaps of visitors to get insights on the trade areas.

Fig. 7 shows four representative contour maps of visit
probabilities. In these figures, The color of an area reflects
the probability that residents in this area visit a specific
commercial district, which is calculated in Sec. V-C. We obtain
the following insights from the different patterns of trade areas.

1) The competition from nearby commercial districts can
compress the trade area. For example, in Fig. 7a, the
trade area of commercial district 1 is squeezed by the
competition with districts 2, 3, which means that the
market share of commercial district 1 in the central area
is decreased.

2) The road network is another reason for the anisotropy
of the trade area. In Fig. 7b, due to the east-west road
passing by, the trade area elongates along the road.
Except for this, the trade area extends almost evenly
because there are no other commercial districts nearby.

3) The natural barriers like rivers can cut off the spread
of the trade area. As shown in Fig. 7c, a river lying in
the south blocks the residents on the south bank to visit
the commercial district on the north bank, whose trade
area spread much further to the north.

4) The attractiveness may lead to different sizes of trade
areas. As shown in Fig. 7d, the two closely located
commercial districts have different sizes of trade areas.

Fig. 8 further shows four representative heatmaps of visitors.
The intensity of color represents the number of visitors from
this area. In Fig. 8a, location A and B are two major sources
of visitors for the commercial district, but the market shares at
these two locations differ, 28% at A, while 12% at B. Fig. 8b,
Fig. 8c and Fig. 8d illustrate the distribution of visitors for the
three commercial districts in Fig. 7a. We find that the middle
area among the three commercial districts is a major source of
visitors for all the three districts, although the visit probability
to each district is relatively low owing to the competition.
Such areas with low market share and large volume of visitors
should be the focus of business managers.

C. Performance of Trade Area Modeling

In this series of experiments, we identify the key metrics
of attractiveness and assess the accuracy of the Huff model
fitted by CellTradeMap to predict the trade areas of other
commercial districts using 5-fold cross validation. Specifically,
the commercial districts are divided randomly and evenly into
5 groups. In each round of cross validation, one group is used
for testing and the other four are used for training.

1) Sensitivity Analysis of Attractiveness Metrics: In this
experiment, the sensitivity parameters γ1, γ2, ..., γH are solved
from Eq.(9) and each parameter corresponds to a metric of
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Fig. 6. (a) Correlation between the number of residents inferred and that by census for each administrative district. (b) The top 8 attractiveness metrics with
high sensitivities. The error bar is the variance over 5-fold cross validation. (c) The top 8 attractiveness metrics obtained from 5 commercial districts. Density
1, 2 and 3 are the population densities in 5km, 5˜10km and 10˜15km range around a commercial district respectively.

(a) (b) (c) (d)
Fig. 7. Contour maps of visit probabilities. Circle nodes represent the center of commercial districts. The color of an area reflects the probability that residents
in this area visit a specific commercial district. The probability is calculated in Sec. V-C. (a) The trade area of 1 is squeezed in the south due to the competition
from district 2 and 3, but stretched in the north due to the east-west road. (b) There is no competition for this commercial district. The trade area extends
nearly uniformly except for the stretch along the east-west road. (c) The extension of the trade area to the south is blocked by a river. (d) The trade area of
district 1 is much larger than that of district 2 owing to the different attractiveness of the two districts.

(a) (b) (c) (d)
Fig. 8. Heatmaps showing the distribution of visitors’ homes. Circle nodes represent the center of commercial districts. The intensity of red represents the
absolute number of visits from a location. (a) A and B are both major sources of visitors, but the visit probabilities for residents in A and B to visit this
commercial district are different. (b), (c) and (d) illustrate the same three commercial districts with Fig. 7a. (b), (c) and (d) show the distribution of visitors
of commercial districts 1, 2, 3 respectively.

attractiveness. The sensitivities are averaged over 5-fold cross
validation and the metrics with top sensitivity are shown in
Fig. 6b. The results reveal that abundant catering options and
parking lots, easy access to public transportation, as well as
large numbers of passengers are critical to the attractiveness
of a commercial district.

The wide spatial coverage of MFR is crucial for valid
sensitivity analysis. Fig. 6c plots the results of the sensitivity
analysis with only 5 randomly selected commercial districts.
Compared with Fig. 6b, the error bars (the variances over 5-
fold cross validation) are much larger in Fig. 6c. This indicates
that sensitivity analysis of attractiveness metrics using data of
a small number of commercial districts tends to be instable,
which is the case in previous studies [9], [10].

2) Predictive Accuracy of Trade Area Model: In this ex-
periment, we utilize the Huff model fitted using commercial
districts in the training set to predict the visit probabilities
Pij of commercial districts in the testing set. The accuracy is
measured by the root mean square error (RMSE) of Pij :

RMSE =

√√√√ 1

IJ

I∑
i=1

J∑
j=1

(Pij − P̂ij)2 (11)

where I, J are the numbers of residential areas and commer-
cial districts. P̂ij is the estimated Pij .

We compare CellTradeMap with two baselines.
• Linear Regression. Least squares method is used to

calibrate the Huff model with all 13 metrics.
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TABLE II
AVERAGE RMSE ON PREDICTION ACCURACY.

Method RMSE
Linear Regression 0.188

Random 5 0.145
Random 10 0.154
L1 − norm 0.128

• Random. Linear Regression with 5 or 10 randomly se-
lected metrics to calibrate the Huff model.

Table II summarizes the results from 5-fold cross vali-
dation. The model fitted by CellTradeMap yields the best
RMSE. Linear Regression performs worst, since too many
irrelevant metrics will harm the model’s accuracy. Compared
with Random, the decrease of RMSE implies that with the
help of L1 − norm, CellTradeMap can improve the accuracy
by selecting the most important attractiveness metrics like
Incoming Flow based on MFR.

VIII. CONCLUSION

In this paper, we propose CellTradeMap, a novel cellular
network based trade area analysis framework for commercial
districts. We devise processing techniques to extract robust
location information from flow-level cellular data, and de-
sign analytical methods to adapt the conventional trade area
analysis workflow to integrate cellular data. We evaluate the
performance of CellTradeMap on trade area delineation and
modeling using an urban-scale cellular network dataset cover-
ing 3.5 million mobile phone users. Experimental results show
that CellTradeMap is able to extract explainable trade areas,
identify important attractiveness metrics, and predict trade
areas of an unseen commercial district with high accuracy. We
envision our work as a pilot study to unlock the full business
potentials of big cellular data analysis.
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