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Abstract—Accurate, real-time object detection on resource-
constrained devices enables autonomous mobile vision appli-
cations such as traffic surveillance, situational awareness, and
safety inspection, where it is crucial to detect both small and
large objects in crowded scenes. Prior studies either perform
object detection locally on-board or offload the task to the
edge/cloud. Local object detection yields low accuracy on small
objects since it operates on low-resolution videos to fit in mobile
memory. Offloaded object detection incurs high latency due to
uploading high-resolution videos to the edge/cloud. Rather than
either pure local processing or offloading, we propose to detect
large objects locally while offloading small object detection to
the edge. The key challenge is to reduce the latency of small
object detection. Accordingly, we develop EdgeDuet, the first
edge-device collaborative framework for enhancing small object
detection with tile-level parallelism. It optimizes the offloaded
detection pipeline in tiles rather than the entire frame for high
accuracy and low latency. Evaluations on drone vision datasets
under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet
outperforms local object detection in small object detection
accuracy by 233.0%. It also improves the detection accuracy by
44.7% and latency by 34.2% over the state-of-the-art offloading
schemes.

I. INTRODUCTION

Bringing advanced machine vision to mobile devices such

as drones and robots enables a wide spectrum of autonomous

mobile vision applications. Examples include mobile phones

for localization [1] and navigation [2], drones for cost-effective

traffic surveillance [3], and robot dogs to enforce social

distancing during the COVID-19 pandemic [4]. Crucial in

these applications is the capability to detect objects from

video inputs. An ideal object detection engine for autonomous

mobile vision applications should be accurate, real-time, and

resource-efficient. (i) Drones and robots should accurately

detect a large number of big and small objects in the scene

(e.g., vehicles and pedestrians in an aerial view of a busy

street). (ii) Fast object detection on continuous videos enables

decision-making on the go.

For instance, a robot may identify the crowd density from

live videos and broadcast alerts when moving in a park. (iii)
resource-efficient: For portability and mobility, the compu-

tation and memory resources in commercial drones are still

limited. Object detection algorithms need to be optimized to

fit in the resource budgets of mobile devices.

Existing object recognition solutions for resource-limited

devices fail to satisfy the accuracy and real-time requirements.

(i) One promising approach for fast object detection is to run

the model locally on-board. Model compression techniques

can dramatically reduce the workload of deep learning models

[5]. However, local object detection with compressed models

is sub-optimal for autonomous mobile vision because accurate

small object detection requires high-resolution input [6], which

easily overwhelm mobile memory. (ii)
An alternative is to offload object detection to the edge,

which utilizes the powerful edge to run large models on

high-resolution inputs for accurate detection. Nevertheless,

offloading incurs a long delay since it involves wireless

transmission of high-resolution videos to the edge. Long end-

to-end detection delay leads to large detection errors as the

mobile device’s view is constantly changing [7].

Pioneer studies [7], [8] avoid transmitting every frame by

using cached detection results of previous frames to track

objects in the current frame and only offloading key frames

to update the cached results. This “detect+track” strategy

supports real-time object detection in case of high bandwidth

networks. Its performance tends to deteriorate in the case

of low-bandwidth, e.g., outdoors, which autonomous mobile

vision applications often target at.

Instead of pure local processing or offloading, we propose to

split the object detection task between the mobile device and

the edge. Specifically, we offload small object detection to the

edge. The rationale is intuitive. Commercial mobile devices are

now able to accurately and rapidly detect large- to medium-

sized objects by running compressed models on low-resolution

videos [9], [10]. Hence only data relevant to small objects need

to be uploaded to the edge in high quality, thus reducing the

overall offloading delay and improving detection accuracy.

Realizing the above idea for accurate and real-time object

detection needs a systematic design on (i) what and how to
offload to the edge and (ii) how to aggregate the detection
results. We base our design upon “detect+track” (Fig. 1), the

prevailing framework, to accelerate offloaded object detection

[7], [8]. The detection results of the current frame is obtained

by adapting cached detection results of prior frames using

lightweight trackers. The cached results are routinely updated

by offloading key frames for expensive yet highly accurate

object detection. In our case, the trackers and the detectors

for big objects are lightweight. Hence the bottleneck for real-

time detection is the offloaded small object detection. Since
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Fig. 1. An illustration of the popular “detect+track” framework for offloaded
object detection [7], [8]. The detection results of the current frame are obtained
by applying trackers on the cached detection results. The cached results are
routinely updated by offloading key frames.

the detection results of the current frame rely on the cached

results, the bottleneck for accurate detection, especially for

small objects, lies in the freshness of the cached results.

We propose EdgeDuet, an accurate, real-time object detec-

tion engine, which tiles and offloads small object detection

to the edge (Fig. 2). EdgeDuet tackles the aforementioned

accuracy and real-time bottlenecks via the following tech-

niques. (i) Optimizing offloaded small object detection with

region-of-interest (RoI) frame encoding and content-prioritized
tile offloading. EdgeDuet applies RoI frame encoding to save

network traffic. Only pixel blocks potentially containing small

objects are transmitted in high quality, while the rest of the

frame is compressed to low quality. EdgeDuet adopts content-

prioritized tile offloading to accelerate small object detection

at the edge. It processes videos in the unit of tiles rather

than the entire frame, so as to improve the parallelism of

offloading. It also prioritizes the offloading of tiles containing

more objects, so that the cached detection results of more

objects are freshly updated. (ii) Real-time tracking via cache
management and adaptive tracker configuration. EdgeDuet

aggregates the detection results from the local and remote

object detectors to obtain fresh and consistent cached results

via a cache management mechanism. It also applies adaptive

tracker configuration to improve the resource efficiency and

real-time performance of the trackers.

We implement EdgeDuet as a cross-platform framework

and evaluate its performance with mobile phones on VisDrone

[11], a public video dataset captured by drone-mounted cam-

eras. Evaluations show that pure local object detection yields a

detection accuracy (in terms of 0.232 of only 0.096 for small

objects, while EdgeDuet achieves an accuracy of 0.319 for

small objects. EdgeDuet also improves the overall accuracy by

44.7% and the end-to-end latency by 34.2% over the state-of-

the-art object detection offloading schemes [7], [8], especially

in the case of low bandwidth and high input frame rate.

The main contributions of this work are summarized below.

• EdgeDuet is the first framework that enhances small

object detection in crowded scenes via collaboration

between the edge and the mobile device.

• We push the state-of-the-art offloaded object detection

Video Decoder Remote Object 
Detector

Mobile

Edge

Input Frame Local Object 
Detector

Cache 
Management

Adaptive Tracker 
Configuration

Video Encoder

Content-prioritized  
tile  offloading

RoI Frame 
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Real-time Object 
Detection

Detect Results

Fig. 2. An overview of EdgeDuet. Rectangles in different colors represent the
three functional modules (offloaded small object detection (blue) (Sec. III),
local object detector (yellow) (Sec. IV) and real-time tracking (green) (Sec. V).
EdgeDuet is implemented as a cross-platform framework consisting of both
edge-side and device-side modules (Sec. VI)).

studies [7], [8] from task-level parallelism to tile-level

parallelism, which notably reduces the offloading latency.

EdgeDuet is a systematic design that enables accurate,

real-time object detection on mobile devices even in the

case of low network bandwidth.

• We implement EdgeDuet as a cross-platform framework.

Evaluations on VisDrone [11] show that EdgeDuet im-

proves the overall accuracy by 44.7% and the end-to-end

latency by 34.2% over the state-of-the-art object detection

offloading schemes [7], [8].

In the rest of this paper, we give an overview of EdgeDuet

in Sec. II and elaborate on its functional modules in Sec. III,

Sec. IV and Sec. V. We present the implementation of Edge-

Duet in Sec. VI and the evaluations in Sec. VII. We review

related work in Sec. VIII and finally conclude in Sec. IX.

II. EDGEDUET OVERVIEW

As shown in Fig. 2, EdgeDuet consists of three functional

modules: (i) an offloaded small object detection module which

uploads high-resolution frames to the edge to detect small

objects; (ii) a local object detector module which detects large

objects from low-resolution frames; and (iii) a real-time track-
ing module which associates the detection results (bounding

boxes, a.k.a bboxes) from both the edge and the mobile

device and tracks each object with single-object trackers. We

elaborate on the detailed designs of each functional module in

the subsequent sections.

III. OFFLOADED SMALL OBJECT DETECTION

This module aims to (i) reduce the data for transmission

to the edge and (ii) accelerate the offloading pipeline for

timely updates of the cached detection results on the mobile

device. EdgeDuet exploits RoI frame encoding to compress

video frames, and content-prioritized tile offloading for highly

parallel object detection at the edge.
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Fig. 3. An example of the class-dependent size threshold for small objects.
Details of datasets, local and remote object detectors see Sec. VI.

A. RoI Frame Encoding

As mentioned in Sec. I, accurate small object detection

relies on high-resolution, high-quality frames as input. Yet

uploading high-quality frames to the edge impairs real-time

object detection [12]–[14]. The RoI frame encoding module

reduces the amount of transmitted data by only keeping the

pixel blocks containing small objects in high quality while

compressing the rest of the frame to low quality. Although

RoI frame encoding has been used in other offloading schemes

[8], [15], the definition of RoI (i.e., blocks containing small

objects in our case) and the compression level vary and should

be tuned for specific applications.

1) Determining Blocks Containing Small Objects: A pixel

block is considered as containing small objects if (i) the local

object detector cannot classify the block into a class (or reports

low confidence scores); and (ii) the remote object detector can

classify the block to a class (or reports high confidence scores).

Due to the high temporal correlation between successive

frames, we use the detection results of the previous frame

to identify blocks potentially containing small objects in the

current frame. For simplicity, we decide whether an object is

small using a fixed size. The size is empirically tuned such

that objects below this size cannot be accurately detected by

the local object detector but can be accurately detected by

the remote object detector. An object size is considered as

accurately detected if the recall is above 90%. Experiments

show that the optimal size threshold for small objects varies

across classes. For example, a size of 2000 results in almost

100% recall for pedestrians but less than 40% recall for cars

(see Fig. 3). Hence a different size threshold is set for each

targeting class.

2) Determining Compression Levels: Blocks which are de-

termined as containing no small objects cannot be compressed

to arbitrarily low quality. This is because the decision is made

based on the detection results of the previous frame. If a new

object appears in the current frame, the blocks containing this

object may be so heavily compressed that the object cannot

be detected by the remote object detector. To avoid missing

detection of new objects, the compression level is chosen such

that the remote object detector outputs low confidence scores

on the compressed blocks but will not fail to locate objects.

These low confidence objects are also return to the device for

offloading their blocks at the next frame.

3) Implementing RoI Frame Encoding: We use the Ef-

ficiency Video Coding (HEVC, a.k.a h.265) codec [16] to

encode pixel blocks containing small objects to high quality

and compress the rest of the frame to low quality. We generate

a delta QP map describing the delta QP values of each

macroblock in the raster order and encode the current frame

with the HEVC codec. Fig. 4a and Fig. 4b show an example

image before and after RoI frame encoding.

B. Content-Prioritized Tile Offloading

This module enables real-time small object detection via

fine-grained (tile-level) parallel offloading. It also facilitates

timely updates of cached detection results on the mobile device

by prioritizing the processing of tiles that contain more small

objects. Pipelined offloading proves effective for fast object

detection [8], where the offloading process is split into frame

encoding, frame upload, frame decoding, object detection, and

result downloading. Nevertheless, existing work [8] pipelines

the offloading process on a frame basis, which limits the

achievable parallelism. In contrast, EdgeDuet breaks a frame

into tiles and enables tile-level parallelism, thus allowing faster

pipelined and parallel offloading. We explain how to realize

tile-level parallelism and content-based priority below.

1) Enabling Tile-Level Parallelism: A tile is a rectangular

region in a frame defined in HEVC [17]. Fig. 4c shows an

example of 5x3 tiles. To support tile-level parallelism, we need

to modify the frame encoding, frame decoding, and object

detection stage, as they are designed to operate on a frame

basis. The principle is to eliminate dependencies among tiles

for each stage, as described in detail below.

• Frame Encoding. Existing video encoders [18]–[20] out-

put the encoded bit-stream after processing all the tiles
in a frame. We redesign the video encoder such that it

outputs the bit-stream of each tile once it is encoded.

Our method is based on Kvazaar [20], which treats the

encoding of each tile as an individual task and allows

parallel tile encoding via a dynamic task graph. However,

Kvazaar outputs bit-streams on a frame basis. Fig. 5(a)

shows the task dependencies among tile encoding tasks

and frame bit-stream tasks of the current frame and

the next frame in Kvazaar. We modify its bit-stream

writing module so that the bit-stream tasks operate on

a tile basis, as the task dependencies shown in Fig. 5(b).

Specifically, we break the bit-stream of a frame into a

picture parameter set (PPB) and each tile’s bit-streams.

Consequently, each tile’s bit-stream only depends on PPB

and the tile encoding task. Hence the video encoder will

first output the PPB, and once one tile is encoded, its bit-

stream will be output and sent for offloading. We also

introduce a fake bit-stream task to mark the end of the

bit-stream tasks in a given frame.

• Frame Decoding. Existing video decoders operate on

a frame basis. They assume the bit-streams of all the

tiles in a frame arrive sequentially and utilize the offset

from the first tile in the frame to locate the other tiles.
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Fig. 4. An example of key steps in EdgeDuet. (a) Input frame. (b) Frame after RoI frame encoding, where blocks containing no small objects are compressed
to low quality. (c) Tiles. (d) The output of video decoder after enabling tile-level parallelism. (e) Overlap-tiling. (f) Remote object detector results of tiles (red
rectangles). (g) Local object detector results of the low-resolution frame (yellow rectangles). (h) Cache management of remote and local object detectors.
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(a) Kvazaar parallelism (b) EdgeDuet parallelism

PPSPPS Tile encodingTile encoding Frame/Tile bit-streamFrame/Tile bit-stream

Frame t Frame t+1

Fake bit-streamFake bit-stream Task dependencyTask dependency

Fig. 5. Video encoding parallelism of Kvazaar and EdgeDuet.

For example, in HEVC, only the location of the first

tile is signaled in the slice header. All the other tiles

transmit their bit-stream offsets in the slice header, which

introduces dependencies on the first tile. We eliminate

such dependencies and enable tile-level parallelism in

frame decoding by forcing every tile in a frame as a “first

tile”. This is implemented by modifying the bit-stream of

each tile in the video encoder (Kvazaar) and the HEVC

parser in the video decoder (OpenHevc [21]) accordingly.

Fig. 4d shows an example of tile-level frame decoding.

Each tile is decoded to its position independent of the

other tiles (shown in black).

• Object Detection. Performing object detection on each tile

separately may miss objects which cross the boundaries

of adjacent tiles. We mitigate such dependencies among

tiles during object detection via overlap-tiling. Fig. 4e

shows an example, where tile 2 and 4 are primary tiles

and tile 1, 3, 5, 6, 7, 8 are overlap tiles. We group

each primary tile with its surrounding overlap tiles for

small object detection. In this example, tile 1, 2, 3, 5,

6, 7 will be grouped together. Detecting objects for each

tile group reduces the probability of missing objects that

exceed the boundary of a primary tile. We only group

the surrounding tiles because our remote detector targets

at small objects. Only large objects may be present in

two primary tiles crossing the overlap tiles, as person

A and B in Fig. 4f. The overlap size (minimal width

and height of overlap tiles) is set to the least multiple

coding tree blocks, which is larger than the maximal size

of small objects defined in Sec. III-A1 and complies to

the tile definition in HEVC. Fig. 4f shows an example of

detection results using our method.

2) Enabling Content-based Priority: Prioritizing tiles con-

taining more objects over those containing fewer objects al-

lows the cached detection results of more objects to stay fresh.

Since our implementation of tile-level parallelism (Sec. III-B1)

ensures tiles offloaded early to return detection results early,

we only need to prioritize tiles at the frame encoding stage.

• Implementing Tile Priority for Frame Encoding. We mod-

ify the task schedule module in Kvazaar by adding a

dynamic priority mapping module to enable the ordering

of tiles (see Fig. 6). Specifically, the dynamic priority

mapping layer associates a priority value p to each pri-

mary tile according to the input content, where p ∈ [0, N)
and N is the number of primary tiles, each overlap tile

calculates its priority p as the maximum priority of its

surrounding primary tiles. Then the encoding task of each

tile is assigned a priority value of p while its bit-stream

task is assigned a priority value of p+N . This is to force

the bit-stream task to execute once the tile is encoded,
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Fig. 6. An illustration of content-based tile priority.

TABLE I
PERFORMANCE OF LOCAL DETECTOR ON IPHONE 11.

Model IoU (offline) Latency IoU (online)

YOLOv3-tiny (320x320) 0.015 12.4ms 0.012
YOLOv3-tiny (640x640) 0.078 19.5ms 0.052
YOLOv3-tiny (960x960) 0.140 38.9ms 0.090

YOLOv3 (320x320) 0.176 23.8ms 0.092
YOLOv3 (640x640) 0.361 62.5ms 0.193
YOLOv3 (960x960) 0.522 178.7ms 0.161

which can be before other tiles’ encoding tasks.

• Assigning Tile Priority based on Content. To determine

the priorities (i.e., p) of the N primary tiles, we count the

number of small objects of the corresponding tile group.

The priority value p of each primary tile is the index in

ascending order.

IV. LOCAL OBJECT DETECTOR

The local object detector aims to detect medium- to large-

sized objects in the video frames locally on the mobile device.

Since the mobile devices have limited resources compared

with the edge, the local object detector should be lightweight

and operate on low-resolution frames. We empirically decide

the model and input resolution for the local object detector.

The local object detector should balance between offline accu-
racy and latency to achieve high online accuracy. The offline

accuracy refers to the accuracy of the object detector, while

the online accuracy refers to the accuracy in the “detect+track”

framework [7], [8]. Accuracy is measured by metrics such as

IoU, as will be defined in Sec. VII-A5.

Table I shows the performance of different combinations of

object detectors and input resolutions evaluated on the Vis-

Drone [11] dataset with an iPhone 11. For resource efficiency,

the models are quantized to float16. Based on the analysis,

we choose YOLOv3 (640x640) as the local object detector.

Fig. 4g shows an example of detection results of the local

object detector. Note that we only aim to show the feasibility

of running an object detector locally for accurate and real-time

medium- to large-sized objects. An exhausted search on the

optimal local object detector is out of the scope of this paper.

V. REAL-TIME TRACKING

This module aggregates the offloaded and the local detection

results into the cache and adjusts the cached results via object

trackers to output the bounding boxes for the current frame.

EdgeDuet adopts multiple single-object trackers for object

tracking, as in [7], [8]. Fig. 7 shows the general workflow.

Video 
Streaming

Tracker 1

Tracker 2

Query real-time resultsRecv bounding boxes 

Timeline

Update Task

Init Task

Update Task

Init Task

Update Task

Init Task

Fig. 7. General workflow using multiple single-object trackers.

Trackers returns latest updated bounding boxes so as to query

as the same fps as the video input. Since we target at video

streams with high frame rates (30/60/120 fps) and the cached

results come from two object detectors, the general workflow

needs to be optimized for EdgeDuet, as we describe below.

1) Cache Management: We cache the detection results

received from the local or remote object detector and discard

the old results upon receiving new ones. One issue in our

cache management is that the local and the remote detector

may introduce duplicated detection results of the same object.

We drop the results of the local detector for small objects

and those of the remote detector for medium- to large-sized

objects in case of duplicated results. Fig. 4h shows an example

of merging local detection results and remote detection results.

2) Adaptive Tracker Configuration: To optimize the track-

ing performance on mobile devices, we consider the following.

• Choice of Single-object Tracker. We empirically choose

KCF [22] as our single-object tracker since it is both

faster and more accurate than the optical flow based

tracker in [7] and has a higher accuracy than the motion

vector based tracker in [8].

• Priority-based Tracker Scheduling. To execute multiple

single-object trackers on resource-constrained devices,

we adaptively update the tracking results based on the

speed of the objects, because it is unnecessary to fre-

quently update the tracking results of objects that are

static or moving slowly. Specifically, we estimate the

object’s speed by the object’s move distance in contin-

uously tracked frames. Then we set a different weight

to each speed range, and the priority of each tracker

is updated to the product of its weight value and the

default priority (distance between the current frame and

last tracked frame in sequential task scheduling). We

schedule the tracker with high priority to track first to

ensure high-speed objects frequently updated.

VI. IMPLEMENTATION

This section presents the implementation of EdgeDuet on

the edge-side and the device-side.

A. Implementation of Core Edge-Side Modules

We implement the edge-side modules of EdgeDuet on a

CentOS 7.0 server. It is equipped with two 8-core Intel Xeon

CPU E5-2560 v4 CPUs, two GTX 2080ti GPUs and 256GB
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memory. The edge-side modules of EdgeDuet consist of a

video decoder and a remote object detector.

1) Video Decoder: The video decoder is implemented in

C++ based on the OpenHEVC library [21]. We modify the

library to support tile-based parallel decoding as in Sec. III-B1.

We use OpenCV-Python bindings [23] for Python to run the

decoder and access the decoding results from memory.

2) Remote Object Detector: The detector for small objects

on the edge is implemented as a pre-trained full-precision

YOLOv3-spp [24] model in PyTorch [25]. We run the model

in multiple processes for parallel inference on tiles. The GPU

is set to CUDA Multi-Process Service mode [26] to reduce

GPU context switching.

B. Implementation of Core Device-Side Modules

We implement the device-side of EdgeDuet on an iPhone

11, with the A13 Bionic chip embedded with a four-core

GPU. The device-side modules of EdgeDuet consist of a video

streamer, a video encoder, a local object detector, and an object

tracker. Most modules on the device side are implemented in

C++ 17 [27] for easy deployment on different platforms such

as iOS Frameworks [28] and Android NDK [29].

1) Video Streamer: This module is used for simulating the

video camera streaming process using standard video datasets.

The streamer loads a video file and feeds video frames into

EdgeDuet at 30/60/120 fps. The module is implemented in

C++ using the VideoCapture module in OpenCV [30] to

read RGB images from a video file and convert the image to

I420 format for video encoding.

2) Video Encoder: This module is implemented in C++

based on Kvazaar [31], an open-source HEVC encoder.

We modify the library to support tile-based parallel encoding

and priority, as described in Sec. III-B1 and Sec. III-B2. We

empirically encode and offload frames at a fixed frame rate

(e.g., 5 fps).

3) Local Object Detector: This module is implemented in

Objective-C [32] with Core ML [33], which optimizes on-

device performance by jointly leveraging the CPU, GPU, and

Neural Engine. We use the pre-trained compressed YOLOv3

model YOLOv3FP16 (640x640). for medium- to large-sized

object detection, as explained in Sec. IV. We empirically run

the local object detector at a fixed frame rate (e.g., 10).

4) Object Tracker: This module is implemented in C++

with the KCF [22] Tracker and ThreadPool [34] to sched-

ule multiple object tracking. We use the implementation of

KCFcpp [35] without the HOG features [36] for fast object

tracking, as described in Sec. V-2.

VII. EVALUATION

This section presents the evaluations of EdgeDuet.

A. Experiment Setup

1) Datasets: We compare different methods on VisDrone

[11], a dataset of videos captured by drone-mounted cameras.

We filter out the low-resolution videos and only keep six 2K

videos (2560x1440) captured along a street. We upsample the

origin 30fps videos to 60/120 fps with Super-SloMo [22] to

evaluate the performance with the video frame rate. Although

the VisDrone dataset contains annotated bounding boxes, some

small objects are not annotated. Therefore we use the outputs

(cars and pedestrians) of a YOLOv3-spp (2560x2560) model

to re-annotate these videos and treat them as the ground truth,

as with other recent studies on video analytics [15], [37], [38].

Fig. 8 shows certain vital statistics of the VisDrone dataset.

From Fig. 8a, the average number of objects in each frame is

148.4. As we will show later, adaptive tracker configuration

is beneficial to track such many objects in real-time. From

Fig. 8b and Fig. 8c, 75.1% of cars and 71.8% of pedestrians are

small objects. We will show the performance gain of offloading

small object detection over local detection shortly.

2) Compared Methods: We compare our EdgeDuet with

the following object detection schemes.

• Glimpse [7]: a continuous, real-time object detection

system that first proposes the “detect + track” framework

on mobile devices. It offloads frames to the cloud and

uses optical flow based tracker for real-time tracking.

• EAAR [8]: a state-of-the-art real-time object detection

system with offloading. It exploits parallel streaming and

inference as well as motion vector based object tracking.

• LaT: a variant of EdgeDuet (Local object detector +

adaptive Tracking configuration) that only performs local

object detection and tracks with our adaptive tracker

configuration.

3) Implementation and Settings of Compared Methods: The

implementation of EdgeDuet and LaT can be found in Sec. VI.

We briefly explain the implementation of Glimpse, EAAR,

and parameter settings for all methods below.

• Frames Encoding. To ignore the difference of JPEG

encoders and video encoders, we use Kvazaar to get

compressed JPEGs for Glimpse and video frames for

EAAR and EdgeDuet. This setting ensures the same frame

quality for fair comparison. For Glimpse, we encode

each frame to I frame by setting Group of pictures (GOP)

as 1. For EAAR and EdgeDuet, the GOP is set to 10. We

use the ultrafast preset for real-time video encoding.

We tune high-quality QP as 22 and low-quality QP as 44

for RoI encoding in EAAR and EdgeDuet. EAAR uses

Kvazaar to encode one frame to 1x4 tiles and pack

each tile into one slice, as the default setting. EdgeDuet

splits the frame into 5x3 tiles for offloading, as in Fig. 4c.

• Remote Object Detector. We use the same remote ob-

ject detection model, i.e., YOLOv3-spp, for Glimpse,

EAAR, and EdgeDuet. Glimpse operates on the input

size of 2560x2560. EAAR operates on 1280x1280 but

returns the detection results in 2560x2560. This setting

allows a lower latency of EAAR compared with its ori-

gin dependency aware inference. EdgeDuet operates on

960x960 for overlap-tiling inference. The overlap size is

set to 128 (2 macroblocks) as in Sec. III-B1.

• Real-time Object Tracking. We implement the optical

flow based tracker with calcOpticalFlowPyrLK for
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Fig. 8. Characteristics of VisDrone [11] dataset. There are a number of objects in each frame, and most objects are small in size.

Glimpse. For EAAR, the motion vector based tracker is

implemented as an offline process. When received from

the server, each track frame is associated with a refer

frame ID. We use ffmpeg to compress the refer and

track frames and extract the motion vector based on the

refer frame to simulate RPS Control in EAAR. LaT uses

the same tracking module of EdgeDuet. They both split

speed range into two groups and set weight as 2.0 for fast

speed range and 1.0 for slow speed range, as explained

in Sec. V-2. We query the tracking results of the previous

frame when the current frame is feed for all methods.

4) Network Setting: Since autonomous mobile vision appli-

cations are often deployed outdoors, the network connections

vary. Accordingly, we compare the methods in different net-

work settings. We connect the mobile device and the edge

with WiFi 5GHz and emulate different types of networks with

Network Link Conditioner, a developer tool provided

by Apple. We use it to simulate different network conditions

(LTE, WiFi 2.4GHz, WiFi 5GHz), and network bandwidths.

5) Metrics: We evaluate the performance of different meth-

ods with the following metrics.

• Latency: Since our detection results are composed of

medium- to large-sized objects in frames from local

object detector and small objects in tiles from remote

object detector. We average latency for all objects, which

is compatible with the definition of latency in EAAR.

• Accuracy: We use the average IoU [39] to measure the

real-time object detection accuracy as in Glimpse and

EAAR. The IoU is averaged over all objects in all frames.

B. End-to-End Performance

Fig. 9 summarizes the accuracy (IoU) and latency of differ-

ent methods under LTE, WiFi 2.4GHz, WiFi 5GHz network

conditions. Fig. 10 highlights the accuracy of small objects.

We present our observations and explain the results below.

1) Overall Comparison: EdgeDuet notably outperforms the

two offloading schemes, Glimpse and EAAR, in both accu-

racy and latency under all the three network conditions. LaT is

the fastest because it only performs local detection. However,

pure local detection has the worst accuracy, especially for

small object detection. EdgeDuet achieves 161.5%, 245.0%,

292.4% improvement for small object detection accuracy

under the three network conditions, respectively. Under slow

network connection, e.g., LTE, LaT achieves similar accuracy

with Glimpse and EAAR. This indicates the necessity of a

local object detector when network conditions vary, which

is common outdoors. Since LaT performs badly for small

objects, we exclude it for the subsequent evaluations.

2) Comparison with Offloading Schemes on Latency: Edge-

Duet achieves 48.7%, 39.6%, 38.6% latency improvement than

Glimpse and 35.4%, 35.2%, 32.1% latency improvement

than EAAR under the three network conditions. The improve-

ment in latency is more notable under slower networks, e.g.,
LTE. EAAR achieves shorter latency than Glimpse since it

transmits encoded videos instead of raw JPEGs. EdgeDuet is

faster than EAAR for the following reasons.

• Detection of medium- to large-sized objects of EdgeDuet

is from a local object detector. The latency of the local

object detector is lower than offloading.

• Only small object detection is offloaded in EdgeDuet.

Therefore fewer data need to be transmitted.

• EdgeDuet accelerates the offloading pipeline with tile-

level parallelism. EAAR only implements task-level par-

allelism, so that the detection results have to wait for

processing the entire frame.

3) Comparison with Offloading Schemes on Accuracy:
EdgeDuet achieves 51.6%, 45.3%, 47.0% accuracy improve-

ment gain over Glimpse and 49.5%, 43.4%, 41.1% accuracy

improvement over EAAR under the three network conditions.

EAAR achieves slightly better accuracy than Glimpse under

LTE and WiFi 2.4GHz. The reason might be that motion

vector based tracker behaves badly when latency increases.

EdgeDuet yields the highest accuracy because it trades off

between the tracker’s accuracy and efficiency and employs

adaptive tracking to update fast-moving objects.

4) Comparison with Offloading Schemes on Small Object
Detection.: EdgeDuet achieves 35.2%, 34.3%, 44.3% small

object accuracy improvement over Glimpse and 73.3%,

67.0%, 62.6% small object accuracy improvement over EAAR.

EAAR is worse than Glimpse for small object detection,

although it has a higher overall detection accuracy. This is
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Fig. 9. End-to-end object detection accuracy (bars in red) and latency (bars in blue) of different methods under three network connections.

(a) LTE (b) WiFi 2.4GHz (c) WiFi 5GHz

Fig. 10. Small object detection accuracy of different methods under three network connections. Pure local object detection (LaT) is excluded from subsequent
evaluations for its low detection accuracy on small objects.

because small objects contain very few macroblocks to extract

motion vectors, making it inaccurate to represent the object.

C. Impacting Factors on Overall Performance

1) Impact of Bandwidth: Fig. 11 shows the accuracy of

different methods under different bandwidths. Thanks to the

local object detector and optimized offloading, EdgeDuet con-

sistently achieves better accuracy than Glimpse and EAAR.

Particularly, when the bandwidth is limited (below 10Mbps),

the accuracy of Glimpse and EAAR drops dramatically.
2) Impact of Frame Rate: Fig. 13 shows the accuracy of

different methods when feeding videos of different frame

rates. EdgeDuet consistently achieves higher accuracy than

Glimpse and EAAR, even at 120fps. With the increase of

frame rate, the accuracy of Glimpse drops. This is because

the real-time tracker of Glimpse only works in an fps lower

than 30fps. As for EAAR, increasing the frame rate motion

does not impact the motion vector based tracker and thus the

accuracy. An interesting finding is the accuracy of EdgeDuet

increases with the frame rate. The reason may be that we

use adaptive tracker configuration to update trackers of high

speed objects frequently to reduce the influence of the skipped

frames. Our tile-level parallelism may also help since once

each tile’s results are received, they do not wait for the new

frame fed with high fps video input.

D. Benefits of Individual Modules in EdgeDuet

1) Benefits of RoI Frame Encoding: We evaluate the ben-

efits of RoI frame encoding by comparing the offloading file

size with EAAR and Glimpse. We average the bits count of

frames with the same index in GOP. Since Glimpse only

contains I frame, we only average the corresponding frames

with the same frame index. Fig. 12 shows the average frame

size of GOP. Since Glimpse does not apply inter-frame

prediction and RoI frame encoding, its frame size is the largest,

especially when the frame is encoded to P frame in EAAR and

EdgeDuet. Since EdgeDuet does not offload medium- to large-

sized objects, its frame size is smaller than EAAR.

2) Benefits of Content-prioritized Tile Offloading: We show

the benefits of content-prioritized tile offloading by comparing

EdgeDuet with two variants. The variant Frame-Level
encodes frames without splitting into tiles. The variant

Tile-Level splits frames into tiles, but does not change

their priority. Fig. 14 shows the accuracy and latency of

EdgeDuet and the two variants. EdgeDuet achieves 7.3%

and 4.3% accuracy improvement over Frame-Level and

Tile-Level. EdgeDuet achieves 12.2% and 5.1% latency

improvement over Frame-Level and Tile-Level.

3) Benefits of Adaptive Tracker Configuration: We evaluate

the benefits of adaptive tracker configuration by comparing

EdgeDuet with a variant SeqTracking which sequentially

updates each tracker. Fig. 15 shows the accuracy of Edge-

Duet and SeqTracking. Our adaptive tracker configuration

improves the overall accuracy by 4.2%.

VIII. RELATED WORK

Our work is relevant to the following categories of research.

Object Detection Models. Advances in deep learning have

resulted in various accurate and fast object detection models
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such as two-stage models e.g., Faster-RCNN [40] and one-

stage models e.g., YOLO [41]. Model compression and ac-

celeration techniques [5], [42]–[44] can substantially reduce

the computation workload of deep learning-based models.

However, the compressed models suffer from low accuracy

on small object detection if the input image/video is low in

resolution [6]. For accurate and fast small object detection,

customized models [6], [13], [14] have been developed to

detect objects on sub-regions of the input image/video. Our

work also performs object detection on sub-regions. However,

rather than design new object detection models, we exploit

existing YOLO-family models of different capabilities [41] to

process different sub-regions of video frames.

Edge/Cloud Offloading. A popular strategy to enable highly

accurate object detection on resource-constrained mobile de-

vices is to offload the compute-intensive object detection to

the powerful edge/cloud server [7], [8], [12], [15], [45]–

[51]. However, offloading may incur long delays since large

amounts of videos need to be uploaded to the server via

wireless networks. To enable offloaded object detection on

continuous videos, Glimpse [7] proposes to only send trigger

frames and proposes the “detect + track” framework for fast

object detection. EAAR [8] compresses the uploaded frames

via RoI based video encoding and applies parallel streaming

and inference techniques to reduce the offloading latency

further. Our work is built upon the “detect + track” framework

and the pipelined offloading principle, but improves the par-

allelism of the offloading pipeline to tile-level. Furthermore,

these studies do not optimize small object detection. DDS [15]

differentiates small and large object detection by first offload-

ing high-resolution, low-quality video frames to detect large

objects and locate small objects. Regions containing small

objects are then encoded in high quality and offloaded again

to detect small objects. The method improves the accuracy

of small object detection but doubles the delay for object

detection. Unlike DDS, which detects large and small objects

sequentially, we run a fast model on low-resolution frames to

detect large objects and offload small object detection with

high-quality frames at the same time.

IX. CONCLUSION

This paper presents EdgeDuet, the first splits object detec-

tion between the mobile device and the edge for accurate,

real-time object detection on resource-constrained devices.

Specifically, EdgeDuet offloads small object detection to the

edge while detecting medium- to large-sized objects locally on

the mobile device. EdgeDuet exploits RoI frame encoding and

priority-based tile offloading to reduce the network traffic and

accelerate the offloading pipeline. It also optimizes the cache

detection results and tracker configurations for real-time object

tracking. Evaluations on VisDrone, a video dataset from drone-

mounted cameras, show that EdgeDuet outperforms local

object detection in small object detection accuracy by 233.0%.

It also improves the overall accuracy by 44.7% and end-to-end

latency by 34.2% over the state-of-the-art offloading schemes,

especially in low bandwidth and high frame-rate input.
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[47] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
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