
DeepScheduler: Enabling Flow-Aware Scheduling
in Time-Sensitive Networking

Xiaowu He∗, Xiangwen Zhuge∗, Fan Dang†, Wang Xu† and Zheng Yang∗�
∗ School of Software and BNRist, Tsinghua University † Global Innovation Exchange, Tsinghua University

horacehxw@gmail.com, zgxw18@mails.tsinghua.edu.cn, dangfan@tsinghua.edu.cn,

wangxu.93@hotmail.com, hmilyyz@gmail.com

Abstract—Time-Sensitive Networking (TSN) has been consid-
ered the most promising network paradigm for time-critical
applications (e.g., industrial control) and traffic scheduling is
the core of TSN to ensure low latency and determinism. With
the demand for flexible production increases, industrial network
topologies and settings change frequently due to pipeline switches.
As a result, there is a pressing need for a more efficient TSN
scheduling algorithm. In this paper, we propose DeepScheduler,
a fast and scalable flow-aware TSN scheduler based on deep
reinforcement learning. In contrast to prior work that heavily
relies on expert knowledge or problem-specific assumptions,
DeepScheduler automatically learns effective scheduling policies
from the complex dependency among data flows. We design a
scalable neural network architecture that can process arbitrary
network topologies with informative representations of the prob-
lem, and decompose the problem decision space for efficient
model training. In addition, we develop a suite of TSN-compatible
testbeds with hardware-software co-design and DeepScheduler
integration. Extensive experiments on both simulation and phys-
ical testbeds show that DeepScheduler runs >150/5 times faster
and improves the schedulability by 36%/39% compared to state-
of-the-art heuristic/expert-based methods. With both efficiency
and effectiveness, DeepScheduler makes scheduling no longer an
obstacle towards flexible manufacturing.

Index Terms—Time-Sensitive Networking, Traffic Scheduling,
Cyber-physical System, Deep Reinforcement Learning.

I. INTRODUCTION

Time-Sensitive Networking (TSN) has been considered the

most promising network paradigm for time-critical applica-

tions like industrial control and automotive [1]. It successfully

bridges the gap between Information Technology (IT) and

Operational Technology (OT) by including real-time capa-

bilities in the Ethernet standard [2], making it a one-size-

fits-all solution. The real-time capabilities come from the

IEEE 802.1Qbv standard [3]. It introduces a time-aware traffic

shaper and enables the network switches to send each packet

following a predetermined cyclic timetable.

Traffic scheduling is critical, especially for TSN. All

switches in a TSN network must synchronize their clocks

and forward data frames cooperatively according to a well-

designed global schedule to ensure low latency and determin-

ism. However, deriving such a schedule is not trivial. It can

be equivalent to a constrained time slot assignment process

on each physical link (detail in Sec. II-B) and is an NP-

hard combinatorial optimization problem. Typical solutions

� Zheng Yang is the corresponding author.

like integer linear programming (ILP)-based or satisfiability

modulus theories (SMT)-based solvers take several hours or

even days to yield a valid result, which is tolerable for

traditional factories whose network topology is stable.

Unfortunately, as the demand for flexible manufacturing

grows, traffic scheduling in industrial networks becomes a

formidable obstacle. According to our investigation of a top-

tier auto glass manufacturer, a single production line can

produce up to 10 distinct types of auto glass per day. Dif-

ferent types of auto glass necessitate distinct pipelines, such

as those with or without coatings, heaters, etc., and they

require different inspection procedures. Currently, there are

approximately 80 to 120 interconnecting devices per pipeline.

Switching a pipeline takes 10 minutes to change the mold

and about 40 minutes to reconfigure the network schedule and

manufacturing settings like the heating curve. As automotive

vendors place higher demands on workflow and inspection

procedures, more equipment is being installed in production

lines. Therefore, scheduling has become a growing burden on

production flexibility and efficiency.

To accelerate scheduling, some researchers have adopted

heuristic searches like Tabu-search [4] or genetic algorithm [5]

in TSN scheduling. Others utilize domain-specific knowledge

(DSK) to prune the algorithm’s search space [6] or simplify the

problem settings [7]. Most of them sacrifice the schedulability

of algorithms for a faster run time by only exploring a subset of

the whole solution space. Despite meaningful and enlightening

attempts, these methods heavily rely on expert experience and

problem-specific assumptions, necessitating a redesign if the

assumptions or data distribution change slightly.

We observe that though the scheduling problem is difficult,

it is significantly simpler to confirm the correctness, or satis-

fiability, of a potential schedule. This leaves an opportunity

to conduct a series of trial-and-error processes and derive

better search policies from implicit data distributions with the

reinforcement learning (RL) framework. Recently, a number

of studies have successfully applied deep learning and RL

to tackle NP-hard combinatorial optimization problems (e.g.,
traveling salesperson problem [8], [9], bin packing [10], [11]).

Nevertheless, due to the TSN scheduling problem’s unique

characteristics, applying DRL to it brings about the following

challenges. (1) Dynamic network topologies. Traditional

deep learning modules require fixed-size feature vectors as

input, while the size and topology of the network vary case

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

28
87

5

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

Schedulability

Speed

OursILP/SMT

Heuristic

DSK

Random1 × 10 × 100 × 1000 ×

100%

0%

Fig. 1: A comparison of different types of schedulers.

by case. It is difficult to encode the node-link relationships

with these modules due to limited scalability. Thus, we need

to design a scalable neural network architecture capable of

adapting to any network topology. (2) Complex dependencies
among data flows. Each data flow in the network is shaped

by user-specific requirements like source/destination nodes,

maximum delay, etc., and also other flows (approximated by

the current network status). It is difficult to obtain a meaningful

hidden representation capturing the dependency between the

vector-based requirements and graph-based network status.

Consequently, it is necessary to propose an effective fusion

framework between the flow requirements and network status.

(3) Exponentially large decision space. The TSN scheduling

problem requires processing hundreds of data flows simultane-

ously, and each of them has tens of links and thousands of time

slots to select. Its decision space is significantly larger than that

of conventional RL applications (e.g. robot arm control, game

agent control). Therefore, a rational RL framework needs to

be designed to help the model learn an effective policy.

In this paper, we present DeepScheduler, a fast and scalable

TSN scheduler based on DRL. To deal with the above chal-

lenges: (1) We propose a scalable state information encoder

based on the graph neural network (GNN), utilizing the graph

structure to model the complex relationship between network

topology and link states adaptively. (2) We propose a path-

based flow-aware encoder that combines the current network

status and the flow requirements from the perspective of their

possible routes. (3) We decompose the decision space of

scheduling into two interdependent sub-tasks, reducing the

problem size for each RL agent and allowing the model to

efficiently explore the entire search space. Moreover, we pro-

pose hard sample mining and incremental training techniques

to stabilize the model training process.

The main contributions are as follows:

• DeepScheduler is, as far as we are aware, the first DRL

framework that globally solves the TSN scheduling prob-

lem. Compared with the SOTA methods (as qualitatively

shown in Fig. 1), it runs at the second level (>1000/150/5

times faster than ILP/Heuristic/DSK) and adapts to vari-

ous scenarios (36%/39% schedulability improvement over

Heuristic/DSK), making traffic scheduling no longer an

obstacle towards flexible manufacturing.

• We present a scalable neural network architecture with a

path-based flow-aware encoder and a GNN-based network

encoder. It can process arbitrary sizes and topologies of

networks efficiently and effectively, and learns informative

Priority Queues

In

Std. Ethernet Switch TSN Switch

……
Out In

……
Out

Priority Queues Gate Control List

…

Fig. 2: Standard Ethernet switch vs. TSN switch.

SW1

TSN Schedule on SW1

Sensor1(S1)

Robot Arm
(RA)

F.No Src. Dst. Receive Send

1 S1 SW2 13 195
2 S2 SW2 195 371
… … … … …

Sensor2(S2)

…

…
(Other Traffic)

(Other Traffic)

SW2

…

…

Fig. 3: TSN Scheduling example.

representations from the complex dependencies between

heterogeneous flow requirements and network status.

• We have conducted experiments on hundreds of topologies

and different problem sizes to validate DeepScheduler’s

adaptiveness and reliability. In addition, we develop a suite

of TSN-compatible testbeds with hardware-software co-

design and integrate DeepScheduler in the network con-

troller. The successful operation on a real-world topology

demonstrates DeepScheduler’s practicality.

The rest of the paper is organized as follows. First, the

preliminaries are discussed in Sec. II. Then, we introduce the

overview of DeepScheduler in Sec. III and elaborate its design

in Sec. IV. We present the implementation in Sec. V, and

evaluate proposed method in Sec. VI. We discuss the related

work in Sec. VII and conclude the paper in Sec. VIII.

II. PRELIMINARY

A. Switch Model of TSN

Fig. 2 illustrates the key differences between the traditional

Ethernet switch and the TSN switch. Firstly, all TSN switches

and compatible devices in the same network share a globally

synchronized clock with nanosecond precision, as defined in

IEEE 802.1AS standard [12]. Secondly, TSN switches can

additionally reserve specific time slots for potentially critical

traffic, such as sensor signals or industrial control data. This is

accomplished by a Gate Control List (GCL) that specifies the

exact time that each queue is allowed to transmit data packets

[3]. As the GCL in Fig. 2 shows, only q1 can be selected for

transmission in time slot 1, and q2 in time slot 2 accordingly.

Beyond that, researchers have recently tried to enhance

TSN’s switching capability from various perspectives. For

example, Zhao et al. [13] and Yin et al. [14] empowers TSN to

deal with event-trigger critical traffic, Tan et al. [15] combines

TSN with IP layer deterministic technologies. These efforts are

orthogonal to and can be integrated in DeepScheduler.

B. Scheduling Problem and Formulation

Fig. 3 illustrates an example of TSN scheduling. There are

two sensors, two switches, a robot arm, and some background

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

A B

E

C
F D

State Agent

Network
Topology

Link
Slots

……

Update State

Flow Requirements

src:

dest:

length: 3
period: 8ms
delay: 256us

A
D

Route Selection

State
Encoder
(Ⅳ-A)

Multi-task
Policy Net.

(Ⅳ-B)

Flow Selection

Environment
(Ⅳ-C)

Reward Feedback

Reward
Calculation

Action

State Init. &
Maintain.

DeepSchedule

Time Slot
Assignment

Centralized User Config. (CUC)

Centralized Network Config. (CNC)

Network
Scheduler

Config.
Server

Actuator D

A shall send a packet to D
every 2ms …

Per-device
Config.

Sensor A

G
N

N
-b

as
ed

N

et
w

or
k

E
nc

od
er

P
at

h-
ba

se
d

Fl
ow
.E

nc
od

er

…

FFFFFFFFFF

Fig. 4: Overview of DeepScheduler.

traffic in the simple TSN network. The sensors periodically

send critical data packets to control the movement of the robot

arm. As the physical link can only transmit a packet at one

time, it is necessary to predetermine the sending and receiving

time of the flows on each switch to ensure determinism.

We model the network topology as a directed graph G(V, L),
where the switches are graph vertices (V) and each physical

connection between nodes va, vb ∈ V adds two links li =
(va, vb), lj = (vb, va) ∈ L. In addition, all the critical flows’

requirements form a set F = {f1, f2, ..., fN}. And fi contains

the i-th flow’s source (fi.src), destination (fi.dest), packet

length (fi.len), period (fi.prd), and maximum transmission

delay (fi.MD). Following previous work’s convention [16],

we divide the continuous time interval into discrete time slots

of 1/64ms (enough for a switch to process and transmit one

maximum transmission unit (MTU) packet at 1000Mbps), and

set the global scheduling period as 1024 time slots (16ms).
TSN scheduling is a time slot assignment process with the

following constraints: (1) Timing constraints. Each flow should

send its packets following fi.prd, and the end-to-end delay

should be smaller than fi.MD. (2) Slot constraint. Each slot

can only be assigned to at most one data frame. (3) Adjacent

link constraint. A frame can only be scheduled on a subsequent

link after the reception on the previous link. (4) Flow isolation

constraint. The packets for different data flows shall not be

interleaved over the same link. The above constraints form

an NP-hard combinatorial optimization problem and can be

modeled as ILP [16] or SMT [17] problems.

III. OVERVIEW OF DEEPSCHEDULER

A. TSN Configuration Model

As shown in the left part of Fig. 4, IEEE 802.1Qcc [18]

defines four primary components of a TSN network, i.e., end

devices, switches, centralized user configuration (CUC), and

centralized network configuration (CNC). The CUC discovers

the end devices and retrieves the user’s flow requirements. The

CNC receives flow requirements from the CUC and collects

the network’s physical topology. Then, the network scheduler

like DeepScheduler in CNC calculates a global schedule that

satisfies all TSN network requirements based on these inputs.

Following the global schedule, CNC’s configuration server

configures each switch or end device’s TSN features, such

as gate control lists, packet sending time, etc.

B. DeepScheduler Workflow

As shown in the right part of Fig. 4, DeepScheduler adopts a

general model-free reinforcement learning workflow. It solves

the TSN scheduling as a multi-step decision-making problem,

where a neural network-based agent takes the current state of

the problem as the input and outputs a scheduling action. An

environment maintains the state based on the agent’s output

and feeds back reward to the agent when necessary.

Specifically, during each step t, DeepScheduler observes

the state St, containing physical network topology, links’ slot

assignment status, and the set of all flow requirements F .

Afterwards, it applies a scalable two-stage state information

encoder (Sec. IV-A) to process this observation, followed by a

multi-task policy neural network (Sec. IV-B) to make decision

of the action At, i.e., selecting next flow to schedule as well

as its routing. The environment executes At by allocating time

slots for the selected flow, and updates the link status in state
St+1 accordingly. After the termination of entire process, the

environment calculates a reward signal R for the RL algorithm

(Sec. IV-C) to gradually improve the DeepScheduler agent.

IV. DESIGN OF DEEPSCHEDULER

A. State Information Encoder

We adopt a two-stage encoding pipeline to process the

network status and critical traffic flows progressively. Firstly,

a graph neural network (GNN) [19]–[21] is incorporated to

handle arbitrary network sizes and topologies. Afterwards, we

fuse the data flows’ requirements and the network status by

aggregating link-level features along their possible routes.

1) GNN-based Network Encoder: The GNN-based network

encoder is proposed to scale DeepScheduler with arbitrary

network topologies. It takes the physical topology and link

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

Aggregation Phase Update Phase

= (,) = (,)

1 2

3

5

4

(,) (,)

(,)
1 2

3

5

4(,)

Fig. 5: Message passing framework overview.

status as input and outputs an embedding el for each link l,
and an embedding s for the TSN network globally.

Network State Representation. Nowadays, most GNNs are

designed for node features and performing node tasks such as

node classification or prediction [22], while the TSN schedul-

ing problems care more about the link status. Consequently,

we transform the original topology G(V, L) into a virtual graph

L(V ′, L′) to model the physical links. In particular, each node

in L represents a directed link in G, and an edge in L is

generated if two links la, lb in G are end-to-end connected:

V ′ = L;L′ = {(la, lb) : la, lb ∈ G, la ∩ lb �= ∅}. (1)

As aforementioned, each link l in the TSN network has 1024

time slots as a global scheduling period. Thus, we present raw

feature xl ∈ {0, 1}1024 as the input of link l, where xl[i] = 1
means the i-th slot in link l is occupied by TSN flows.

Message Passing Neural Network. Message-passing neu-

ral network (MPNN) [21] is a general framework that for-

mulates the majority of existing GNN models. As Fig. 5

illustrates, the MPNN contains an aggregation phase and an

update phase in each step. During the aggregation, every node

calculates messages for its neighbors, combining their current

hidden states by a function M(·). Then, messages for the same

node are aggregated through an element-wise sum operation.

During the update, the hidden state of each node is updated

with the aggregated messages by another function U(·). After

repeating the above two phases for T times, information of

T -hop neighbors is propagated into each node’s hidden state.

In DeepScheduler, the GNN-based network encoder adopts

two separate multi-layer perceptron (MLP) modules as mes-

sage function M(·) and update function U(·). Formally, the

GNN modules can be denoted as:

mt+1 =
∑

w∈N (l)

M(ht
w||ht

l)

ht+1
l = U(mt+1||ht

l)

, t = 0, 1, ..., T − 1, (2)

where || denotes the concatenation operator, and the neigh-

borhood N (l) of each link l is defined as links that have a

directed edge in L′ pointing to l. We use xl as input h0
l , and

final hidden state hT
l as link embedding el.

Graph-level Summarization. Besides link-level encoding,

DeepScheduler summarizes the entire network status from a

global perspective. We add a super node S into the virtual

graph L and connect every existing node to it. Its initial hidden

state h0
S is the average of all raw input vectors, and the last

hidden state hT
S is used as the graph summary embedding s.

Fig. 6 demonstrates the architecture of GNN-based network

message passing

Init.

…

average

Aggregation Update

…
…
…

For all neighbors of link

For all of the link

+…

Link
Embed.

+…

+…

For all neighbors of link

Graph
Summary

Fig. 6: Architecture of GNN-based network encoder.

encoder. Along with the message passing for ordinary links,

node S receives messages from all the other nodes during each

step and updates its hidden state following Eq.(2).

2) Path-based Flow-Aware Encoder: The path-based flow-

aware encoder aims for an informative representation of each

flow that captures the dependencies between the flow and net-

work status. It encodes every flow fi ∈ F into an embedding

zi, by combining the GNN’s output and the raw requirements.

Path-based Feature Aggregation. To tackle the complex

dependencies, we obtain the perspective of each flow’s possi-

ble routing. Specifically, we extract the link embeddings along

k of the shortest paths for each flow and aggregate them. As

the order of the links through which the packets may pass also

contributes to the scheduling decision, a simple summation of

link-level features will deteriorate the model’s expressiveness.

Consequently, we adopt the Gated Recurrent Unit (GRU) [23]

to model the paths in an order-preserving manner.

Fig. 7 demonstrates an example of a proposed path-based

feature aggregation. There are 3 simple shortest paths from

source node A to destination node D. For each path, we

sequentially feed its link embeddings into the GRU module

and take the final hidden state as the embedding pji for the

j-th path of flow fi. The hidden state carrying the previous

steps’ information is a part of the GRU’s input in the next step.

In this way, we obtain 3 path embedding vectors with the same

hidden state dimensions, thereby limiting the dimensionality

of the subsequent scheduling decision problem.

Flow Embedding Integration. Apart from the source,

destination nodes, we treat flow fi’s remaining entities

(fi.prd, fi.MD, fi.len) as a vector yi ∈ R
3, independent of

the GNN outputs. To avoid numeric overflow, the raw vector

yi is standardized in advance and then linearly projected into

a requirement embedding ri.
For any flow fi ∈ F , we integrate the aforementioned graph

summary embedding s, path embeddings p1i , p
2
i , ..., and flow

requirement embedding ri together as follows:

hi = MLP(s||p1i ||p2i ||...||pki ||ri);
zi = hi + MHA(hi).

(3)

The MHA here denotes a Multi-Head self-Attention module

with 4 heads. It is similar to the Transformer’s encoder

layer [24] without positional encoding. Briefly speaking, the

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

A B

E

C
F D

:: src:
dest:

A

D

Network Topology -shortest Paths Flow Req.

GRU GRU GRU

Path-based Feature Aggregation

Link Embedding

…

Fig. 7: Example of path-based feature aggregation.

MHA module calculates each flow’s embedding by a weighted

combination of all the other flows, based on the relevance score

calculated between each pair of embeddings hi, hj .

To this end, we come up with an informative representation

zi for flow fi that combines not only its semantic character-

istics but also information from the entire network (with the

summary s) and related flows (with the attention mechanism).

B. Multi-task Policy Network

The multi-task policy network is designed to capture the

essential characteristics for a global scheduling decision with

simplified multi-step sub-tasks. It obtains all the flow represen-

tations z1, z2, ..., zN from the state information encoder, and

outputs stochastic decisions for each sub-task at each step.

1) Action Space Decomposition: In RL, both large action

space and long action episodes have negative effects on sample

efficiency and model expressiveness. To deal with exponen-

tially large combinatorial action spaces, we decompose the

entire scheduling policy π into a sequencing policy πs that

selects the next flow to schedule ft ∈ F/Fscheduled, and a

routing policy πr that picks a route rt ∈ {1, 2, ..., k} for the

selected flow. As DNN is more suitable for high-level decision-

making rather than yielding the exact solutions [25], we leave

the final time slot assignment process out of the agent’s design.

Such a decomposition makes the whole learning framework

a sequential Markov game with two interactive agents [26],

where both agents share the same high-level objective. Con-

sequently, the multi-task policy π with the initial state s0 can

be factorized as:

π(f1, r1, f2, r2, ..., fN , rN |s0) =
N∏
t=1

πs(ft|st−1)π
r(rt|ft, st−1),

(4)

where πs and πr interleavingly generate the full solution C =
{f1, r1, f2, r2, ..., fN , rN} for the scheduling problem.

2) Policy Network Design: Given the decomposed action

space and carefully designed state encoder, the DNN design of

the policy network is rather straightforward. For each flow em-

bedding input zi, we apply two MLP modules Q(·) : Rdh → R

and W (·) : Rdh → R
k, where k is the number of shortest

paths considered. We treat Q(zi) as the priority score of the

TSN flows to schedule and adopt a softmax [27] to output the

sequencing policy:

πs(fi|st) = exp(Q(zi))∑
j exp(Q(zj))

. (5)

Notice that the scheduled flows fj ∈ Fscheduled shall not be

sampled again, thus we set Q(fj) = −∞ manually. Similarly,

the routing policy adopts another softmax operation to select

across k possible routes.

C. Environment & RL Training

In DeepScheduler, the environment and RL training al-

gorithms cooperatively provide the agent with trial-and-error

opportunities and guide it to learn better scheduling policies

over time from the problem’s implicit data distributions.
1) Environment: The environment is mainly responsible for

state maintenance and reward calculation. Given the next flow

ft+1 to schedule and its route rt+1, it assigns the currently

available time slots and updates the link status accordingly.

After all the flows are scheduled properly or the scheduling

fails, it calculates the reward signal R for the RL training.

Time Slot Assignment. The time slot assignment algorithm

will be called at every step of the RL, i.e., N times in a

single training iteration of DeepScheduler. In practice, we

select the simple but widely adopted earliest-valid-slot-first
algorithm [4], [5]. For each link in the predetermined route,

it iterates all the empty slots after the flow’s departure time

from the previous link, and selects the first slot that satisfies

the constraints mentioned in Sec. II-B. If there is no valid slot

at the current link, it will terminate the scheduling process.

Reward Calculation. DeepScheduler aims to satisfy all the

flow requirements globally, and the reward design is closely

related to this overall objective. In particular, it is defined as:

R = 1success + α× Psuccess, (6)

where 1success equals 1 if the scheduling succeed and 0 other-

wise, and Psuccess is the percentage of successfully scheduled

flows before termination. The higher reward R implies a better

performance of the scheduling algorithm. Conceptually, the

first term 1success represents the scheduling problem’s ultimate

objective. The second term Psuccess smooths the reward and

helps DeepScheduler improve its schedulability even if it fails

in some cases. We set α = 0.1 after fine-tuning.
2) RL Training: DeepScheduler adopts an enhanced policy

gradient algorithm for RL training. Its main idea is to directly

perform gradient descent on the DNN parameters with the

observed rewards. For simplicity, we define all the parameters

in DeepScheduler’s neural network as θ, and the parameters

related to sequencing policy and routing policy as θs and θr,

respectively. The gradient is formulated according to the well-

known REINFORCE algorithm [28] as follows:

∇θ = Eπ

[(
R(Cπ)− b

)
·

N∑
t=1

(
∇θs log πs(ft|st−1; θ

s)

+∇θr log πr(rt|ft, st−1; θ
r)
)]

,

(7)

where Cπ denotes the full solution trajectory sampled accord-

ing to policy π and the baseline value b is introduced to reduce

gradient variance and increase the training speed. It is set

to the exponential running average of previous rewards R,

representing the improvement of policy π over time. Notice

that θs and θr share the same parameters from the encoder.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: RL W/ ENHANCED POLICY GRADIENT.

Input: dataset D, training steps K, batch size B
Output: optimized parameter θ of DeepScheduler
D′ ← empty FIFO queue;
for step = 1 to K do

si0 ∼ SAMPLEINPUT(D +D′) for i ∈ {1, ..., B};

Ci ← {} for i ∈ {1, ..., B};
for t = 1 to N do

for i = 1 to B do
f i
t ∼ SAMPLEFLOW(πs(·|sit−1));
rit ∼ SAMPLEROUTE(πr(·|f i

t , s
i
t−1));

sit ← UPDATESTATE(sit−1, f
i
t , r

i
t);

Ci ← Ci.append(f i
t , r

i
t, s

i
t);

∇θ ← 1
B

∑B
i=1(R(Ci)− b)∇θ log πθ(Ci);

θ ← θ + α∇θ;

b ← β · averageiR(Ci) + (1− β) · b;

D′.insert(si
∗
0), where i∗ = argmini R(Ci);

if step ≥ threshold then
Update D with flow number N ′ > N ;

return θ;

Alg. 1 demonstrates the RL training process enhanced

with the proposed hard sample mining and incremental learn-

ing techniques. Inspired by the prioritized replay for Q-

learning [29], we propose a hard sample mining method

to help the model learns faster. Specifically, we maintain a

fixed-size first-in-first-out buffer D′, collected by inserting the

already trained sample with the lowest advantage (R(Cπ)− b)
in each training batch. During training, the data points are

uniformly sampled from D + D′, thus the more informative

samples in D′ may be re-utilized in the subsequent training.

Moreover, it is difficult for the model to improve its policy if

the initial RL episode length (i.e., the number of flows) is too

long. Thus, we propose an incremental training technique that

gradually adds the number of flows during training. Without

it, the training process may sometimes fail to converge and

have to be restarted with a different random seed.

V. IMPLEMENTATION

We implement DeepScheduler using PyTorch [30] and

PyTorch Geometric [31]. The GNN encoder consists of 3

message passing steps, where the functions M(·) and U(·)
are both two-layer MLPs. The dimensions of link/path/flow

embedding (ev, p
k
i , fi) and requirement embedding (ri) are

128 and 32, respectively. Leaky ReLU [32] is used as ac-

tivation function for all the modules. We train the model for

10 epochs with the Adam optimizer [33], taking about . The

learning rate starts at 10−4 and decays by 0.99 every epoch.

Training data is generated on the fly, with 28 data points

per batch and 4,000 steps per epoch. The size of the hard

sample buffer is set to 100. We increase the number of flows

in training data by 10 every epoch from 150 to 200. During

the evaluation, DeepScheduler samples 10 candidate solutions

from the stochastic output of the multi-task policy network and

selects a valid one. In terms of the hardware environment,

t
0
…

TSN Switch Evaluation Device

Config. Client

IN

PORTi

Time Sync.

Software
Hardware

OUTSwitch
Fabric Time

Stamper

RTC
Clock

Sy
nc

Fr
am

e

…
…

Data
Frame

Queues
& Gates

OUT

PORTj

IN

RTC
Clock

Sy
nc

Fr
am

e

D
at

a
Fr

am
e

Packet
Generator

G
en

er
at

io
n

Pl
an

C
on

fig
.

Fr
am

e

C
on

fig
. F

ra
m

e

Sy
nc

 F
ra

m
e

Time Sync.

Sy
nc

Fr
am

e

Critical Frame
Analyze. & Plan.

D
at

a
Fr

am
e

G
en

.
Pl

an

Time
Stamper

G
C

L

SW-HW Communication SW-HW Communication

Fig. 8: Architecture of TSN testbeds.

experiments for scheduling methods are all conducted on a

server with two Intel Xeon E5-2560 CPUs, two NVIDIA

2080Ti GPUs, and 256 GB memory.

To verify the schedule calculated by DeepScheduler, we

further develop a suite of TSN switches and evaluation devices

on the Xilinx-Zynq7000 FPGA board [34] with hardware-

software co-design. As Fig. 8 shows, its hardware part im-

plements time-critical functionalities like switch fabric and

transmission selection, while the software part contains mod-

ules with sophisticated processing logic, including time syn-

chronization, CNC configuration client, etc. Both the TSN

switch and evaluation device comply with the IEEE TSN

standards [3], [12], [18], and can measure end-to-end packet

latency with nanosecond-level precision. We integrate Deep-

Scheduler into the testbed as a part of CNC.

VI. EVALUATION

A. Experiment Setup

1) Network Topology: We select the following three typical

random topologies to represent various application scenarios:

Random Regular Graph (RRG) has each node randomly

connected to four other nodes. It resembles the case where

each switch has a fixed number of ports.

Erdős-Rényi Graph (ERG) is generated by connecting

each pair of nodes with a probability of 0.25, which shares

universal properties across all graph types [35].

Barabási-Albert Graph (BAG) is grown by attaching each

new node with three edges preferentially to existing nodes with

a high degree. It represents the situation where several central

switches dominate the network evolution [36].

We only pick the connected graphs generated during exper-

iments. Each node represents a TSN switch in an industrial

network. Unless otherwise mentioned, each topology has 20

nodes, and we train DeepScheduler against them separately.

2) Flow Requirement: The TSN flow requirements are

randomly generated in accordance with IEC/IEEE 60802 [37],

the TSN profile for industrial automation. We randomly select

two switches for each flow as the source and destination. The

period and maximum end-to-end delay are randomly chosen

from {0.5ms, 1ms, 2ms, 4ms, 8ms, 16ms} and {2ms, 4ms,
8ms, 16ms}, respectively. The payload length is uniformly

distributed between 1 and 8 packets.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

of flows

sc
he

du
la

bi
lit

y

(a) Schedulability on RRG

of flows

sc
he

du
la

bi
lit

y

(b) Schedulability on ERG

of flows

sc
he

du
la

bi
lit

y

(c) Schedulability on BAG

of flows

av
er

ag
e

ru
n

tim
e(

s)

(d) Average run time on RRG

of flows

av
er

ag
e

ru
n

tim
e(

s)

(e) Average run time on ERG

of flows

av
er

ag
e

ru
n

tim
e(

s)

(f) Average run time on BAG

Fig. 9: Overall performance of DeepScheduler on different network topologies.

3) Comparative Methods: We compare DeepScheduler’s

performance to that of the following methods:

Random samples 10 candidate orders and routes randomly

and then assigns time slots by the default greedy algorithm.

ILP [16] formulates the scheduling constraints into integer

linear programming and solves them with Z3-solver [38].

Tabu [4] and Genetic [5] adapt general-purpose metaheuris-

tic search algorithms, i.e., tabu search and genetic search,

into TSN scheduling. They iteratively generate many flow

orders and search for a better one until the solution cannot

be improved anymore.

DSK utilizes domain-specific expert knowledge in TSN

scheduling. It first sorts all flows according to predefined

multi-level priority [7], then assigns the time slots by a

customized lowest-degree-first heuristic algorithm [39].

Tabu and DSK are state-of-the-art methods.

B. Overall Performance

Fig. 9 demonstrates the overall performance of DeepSched-

uler. For each experiment, we randomly generate 100 schedul-

ing problems, then record the schedulability, i.e., successful

scheduling rate, and time consumption of different methods.

To sum up, DeepScheduler achieves the highest schedulability

among the counterparts and only takes several seconds to finish

all test cases.

Fig. 9a, 9b, and 9c display the schedulability results. Deep-

Scheduler consistently outperforms other methods, except for

ILP, which has exhausted all possible solutions. When the

problem size reaches 200 flows, DeepScheduler retains 92%,

88%, 98% schedulability and is 35%, 20%, 48% higher than

the best counterpart on RRG, ERG, and BAG, respectively.

Moreover, DSK works well on the ERG but fails to outperform

Tabu on RRG and BAG, indicating the expert knowledge has

poor adaptiveness to the problem settings. By contrast, Deep-

Scheduler can automatically learn the implicit distributions

from the perspective of traffic flows.

Fig. 9d, 9e, and 9f illustrate the run time results in logarith-

mic scale. The average time consumption of DeepScheduler,

DSK, and Random increase linearly to the problem size,

while others grow exponentially. Since ILP takes up more

than 1 hour with 100 flows, it is not reported for greater

problem sizes. Furthermore, DeepScheduler takes about 50%

more run time than Random, which results from the deep

learning agent. Even with 200 flows, DeepScheduler is able to

finish scheduling within 7 s, while Tabu and DSK take at least

20min and 45 s, respectively. This is because DSK’s degree

calculation is time-consuming, and Tabu goes through thou-

sands of candidates to look for a valid schedule. In contrast,

DeepScheduler utilizes relatively light-weight algorithms and

can find feasible solutions with a limited number of trials, thus

having the lowest run time apart from Random.

C. Ablation Study

1) Impact of Path-based Flow-aware Encoder: We com-

pare the path-based flow-aware encoder with the node-based

encoder, which directly calculates the node embedding for

each flow’s source s and destination d as follows:

xs =
∑

v.src=s

ev, xd =
∑

u.dest=d

eu. (8)

The node embedding xs, xd is then used to replace the path

embedding pji in Eq.(3). We train the model on RRG with the

same hyperparameters as Sec. V and then report their training

curve and schedulability. The incremental training technique

is disabled to better demonstrate their expressiveness.

As is shown in Fig. 10, the node-based method tends to have

a higher variance, and its training reward reaches a plateau

before 0.8. Meanwhile, the proposed path-based method can

learn a better policy with the final training reward of over

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

training iterations

re
w

ar
d

(a) Training curve

of flows

sc
he

du
la

bi
lit

y

(b) Schedulability

Fig. 10: Path-based vs. node-based flow encoder.

RRG ERG BAG
0.0
0.2
0.4
0.6
0.8
1.0

sc
he

du
la

bi
lit

y

Fig. 11: Breakdown of multi-task policy’s contribution.

0.9 on average. Fig. 10b further demonstrates that the path-

based encoding has 9% schedulability improvement compared

to its counterpart on the 200-flow problems. This is because

the path-level feature better captures the scheduling problem’s

semantic characteristics from perspective of each flow.

2) Impact of Multi-task Policy: To validate the effectiveness

of each part of the proposed multi-task policy, we replace the

sequencing part and the routing part with random selection

individually. We train the modified models from scratch and

evaluate their schedulability on each topology with 200 flows.

As Fig. 11 illustrates, removing any part of DeepScheduler’s

policy network worsens the schedulability. The sequencing

policy contributes to 91% more average schedulability than the

Random baseline, while the routing policy further improves it

by 7.3%. The sequencing policy has a greater impact than the

routing policy in line with previous work’s observation [4],

[17], [40]. Without it, DeepScheduler has only marginal

schedulability improvement compared to the Random baseline.

3) Impact of Sampling Strategy: We compare the sampling

strategy with 10 samples, 100 samples, and greedy decoding

that selects the output with the largest probability on RRG.

Tabu search, the best available heuristic, is also illustrated.

Fig. 12 shows the impact of sampling strategy on the per-

formance of DeepScheduler. As expected, the schedulability

becomes higher when the number of samples increases. At

200-flow problem size, the greedy, sample10, and sample100

methods’ schedulability are 71%, 92%, and 99%, respec-

tively. When sampling 100 times, DeepScheduler successfully

schedules all TSN flow requirements for problem size smaller

than 200, while taking an order of magnitude less time than

Tabu This suggests that DeepScheduler learns a more efficient

policy on TSN scheduling problems.

D. Deep Dive of DeepScheduler

1) Schedulability on TSN Problems: To better understand

the schedulability of DeepScheduler, we conduct a more

detailed analysis of the scheduling results. For the same set of

of flows

sc
he

du
la

bi
lit

y

(a) Schedulability

of flows

av
er

ag
e

ru
n

tim
e(

s)

(b) Average run time

Fig. 12: Performance of different decoding strategies and Tabu.

38 55

8

Ours
(sample10)

Tabu
2

(a) Sample10 vs. Tabu

3854

8

Ours
(sample10)

DSK

(b) Sample10 vs. DSK

42 57

1

Ours
(sample100)

Tabu

(c) Sample100 vs. Tabu

4554

1

Ours
(sample100)

DSK

(d) Sample100 vs. DSK

Fig. 13: Schedulability on the same set of problems.

100 randomly generated scheduling problems, we record the

scheduling results on DeepScheduler, Tabu, and DSK.

Fig. 13 shows the coverage relationship between their

schedulable sets. Most problems that cannot be scheduled by

DeepScheduler, are also unsolvable for comparative methods.

Specifically, DeepScheduler with 10 samples covers 96.5%

and 100% of Tabu and DSK’s schedulable problems. Fig. 13c,

13d further demonstrate that DeepScheduler with 100 samples

can schedule all of the exceptional cases. This implies that

DeepScheduler effectively covers the scheduling capability of

SOTA methods. Therefore, industrial network operators can

safely replace traditional heuristic-based or expert knowledge-

based methods with it in most situations.

2) Generalizability on Different Network Size: The afore-

mentioned experiments are all conducted with 20 nodes in

each network topology. To evaluate DeepScheduler’s model

generalizability, we use the same pre-trained model to sched-

ule RRG networks of different sizes. To maintain a similar

network load, we generate 100, 150, 200, and 250 flows for

the network with 10, 15, 20, and 25 nodes, respectively.

As Fig. 14 demonstrates, DeepScheduler is capable of solv-

ing the TSN scheduling problem on smaller unseen network

sizes. It successfully schedules 96%, 99%, and 92% of cases

on networks with 10, 15, and 20 nodes, respectively. However,

there is a performance decline on it for scheduling problems

with 25 nodes and 250 flows, indicating that DeepScheduler

is not well generalizable to greater network sizes and unseen

flow numbers. This is because increasing the number of flows

leads to larger search space and longer action sequences, which

are not learned during the training process. Nevertheless,

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

10 15 20 25
of nodes

0.00

0.25

0.50

0.75

1.00
sc

he
du

la
bi

lit
y

Fig. 14: Generalizability on different network sizes.

DeepScheduler still outperforms the Tabu baseline by 32%

and can be improved through fine-tuning.

E. Testbed Deployment

To verify the schedule calculated by DeepScheduler, we

deploy it into CNC in our TSN testbeds with 9 TSN switches

and 8 evaluation devices. The testbeds make up an A380

topology as shown in Fig. 15a, which is a simplified version of

the control network on the Airbus A380 airplane [41]. In each

experiment, we randomly generate and schedule 20 flows, then

record their transmission delay at nanosecond-level precision.

The bias (difference between average delay and scheduled

delay) and jitter (standard deviation of delay) for every flow

in the experiments are measured for 1000 periods.

Fig. 15b and 15c illustrate the cumulative distribution of

testbed results for 100 randomly generated experiments. As

Fig. 15b demonstrates, the biases lie narrowly between 3.3 μs
and 3.5 μs, with an average of 3.38 μs. This is caused by the

Ethernet PHY’s processing delay (already considered in the

time slot length design). Fig. 15c shows that 95% of jitters are

less than 100 ns, which is two orders of magnitude lower than

a single time slot. Moreover, all testbed experiments show zero

packet loss rate, indicating there is no collision between flows.

In conclusion, all packets are transmitted deterministically and

in consistency with the scheduling results.

VII. RELATED WORK

A. TSN Scheduling

The TSN scheduling problem has been widely studied. Most

researchers try to satisfy a complete set of flow requirements

globally. Some of them formulate the scheduling constraints

into Satisfiability Modulo Theories (SMT) [17], [42] or Integer

Linear Programs (ILP) [16]. Others utilize the heuristics

search [4], [5], [43] or domain-specific knowledge [6], [7],

[44] to speed up scheduling with sacrification on schedulabil-

ity. Different from them, DeepScheduler automatically learns

a global scheduling policy and shows superior performance.

Another group of work considers the online scheduling prob-

lem. They propose rule-based [45], [46] or learning-based [39],

[47] algorithms to schedule incoming flows based on current

network status. Albeit inspiring, they are infeasible for the

industry due to the restricted problem assumptions.

B. DRL for Combinatorial Optimization

The attempts of adapting DRL into NP-hard combinatorial

optimization starts in 2017, when Bello et al. [48] combines

the policy gradient and pointer network architecture [8] to

S5

D3

D7

S3

S8

D2

D6

S2

S7

D1

S1

D5

S6

CNC

SwitchSx

DeviceDx

D4

D8

S4

S9

(a) Testbed of A380 topology.

bias(us)

C
D

F

(b) CDF of bias.

jitter(ns)

C
D

F

(c) CDF of jitter.

Fig. 15: Testbed deployment results.

tackle the famous traveling salesman problem (TSP). Based

on their work, Kool et al. [9] improves the pointer network

with an attention mechanism. Some work tries other DRL

frameworks like deep Q-learning and Monte Carlo tree search,

and applies them to maximum cut problems [49] and bin

packing problems [50], respectively. Compared to the above

work, DeepScheduler’s unique contributions are the two-stage

state information encoder and multi-task policy to tackle the

distinctive challenges of the TSN scheduling problem.

C. GNN in Computer Networking

Recently, several pioneering works utilize graph neural net-

works for computing networking management or optimization.

In particular, RouteNet and its predecessor [51], [52] try to

model the relationship between network links and routing

policies with GNN and then estimate some key performance

indicators such as delay and jitter. Zhu et al. [53] incorporates

GNN-based models to prune search space in the large-scale

network planning problem. These studies mainly aim for a

scalable representation of the overall network status, whereas

DeepScheduler further proposes an information fusion frame-

work between TSN traffic flow and current network status

through path-based feature aggregation.

VIII. CONCLUSION

In this work, we propose DeepScheduler, a novel DRL-

based TSN scheduler that automatically learns the implicit data

distributions. It effectively processes any network topologies

with the two-stage flow-aware information encoder, and effi-

ciently explores the entire solution space with the action space

decomposition and enhanced RL training. The evaluations

demonstrate that DeepScheduler is fast and scalable, and im-

proves the schedulability significantly. We believe DeepSched-

uler makes a meaningful step towards flexible manufacturing.

ACKNOWLEDGMENT

This work is supported in part by the National Key Research

Plan under grant No. 2021YFB2900100, the NSFC under grant

No. 61832010, 62202263, 62202262, and 61972131.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper et al., “Industry 4.0,” Business &
information systems engineering, vol. 6, no. 4, pp. 239–242, 2014.

[2] D. Bruckner, M.-P. Stănică, R. Blair et al., “An introduction to opc ua
tsn for industrial communication systems,” Proceedings of the IEEE,
vol. 107, no. 6, pp. 1121–1131, 2019.

[3] Enhancements for Scheduled Traffic, IEEE Std. 802.1Qbv, 2015.
[4] F. Dürr and N. G. Nayak, “No-wait Packet Scheduling for IEEE Time-

sensitive Networks (TSN),” in Proc. of the RTNS, ser. RTNS ’16. New
York, NY, USA: Association for Computing Machinery, Oct. 2016, pp.
203–212.

[5] M. Pahlevan and R. Obermaisser, “Genetic Algorithm for Scheduling
Time-Triggered Traffic in Time-Sensitive Networks,” in Proc. of IEEE
ETFA, vol. 1, Sep. 2018, pp. 337–344.

[6] D. Hellmanns, A. Glavackij, J. Falk et al., “Scaling TSN Scheduling for
Factory Automation Networks,” in Proc. of IEEE WFCS, Apr. 2020, pp.
1–8.

[7] J. Yan, W. Quan, X. Jiang et al., “Injection Time Planning: Making CQF
Practical in Time-Sensitive Networking,” in Proc. of IEEE INFOCOM,
Jul. 2020, pp. 616–625.

[8] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Networks,” in Proc. of
the NeurIPS, vol. 28. Curran Associates, Inc., 2015.

[9] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in Proc. of the ICLR, 2019.

[10] H. Hu, X. Zhang, X. Yan et al., “Solving a New 3D Bin Packing Problem
with Deep Reinforcement Learning Method,” arXiv:1708.05930 [cs],
Aug. 2017.

[11] J. Zhang, B. Zi, and X. Ge, “Attend2Pack: Bin Packing through Deep
Reinforcement Learning with Attention,” arXiv:2107.04333 [cs], Aug.
2021.

[12] Timing and Synchronization for Time-Sensitive Applications, IEEE Std.
802.1AS, 2020.

[13] Y. Zhao, Z. Yang, X. He et al., “E-tsn: Enabling event-triggered critical
traffic in time-sensitive networking for industrial applications,” in Proc.
of IEEE ICDCS, Jul. 2022.

[14] S. Yin, S. Wang, Y. Huang et al., “Critical Event-Triggered Flows Tol-
erance in Time-Sensitive Networks,” in Proc. of IEEE ICC Workshops,
Jun. 2021, pp. 1–6.

[15] W. Tan and B. Wu, “Long-distance Deterministic Transmission among
TSN Networks: Converging CQF and DIP,” in Proc. of IEEE ICNP,
2021, pp. 1–6.

[16] E. Schweissguth, P. Danielis, D. Timmermann et al., “Ilp-based joint
routing and scheduling for time-triggered networks,” in Proc. of the
RTNS, 2017, pp. 8–17.

[17] S. S. Craciunas, R. S. Oliver, M. Chmelı́k et al., “Scheduling Real-Time
Communication in IEEE 802.1Qbv Time Sensitive Networks,” in Proc.
of the RTNS, ser. RTNS ’16. New York, NY, USA: Association for
Computing Machinery, Oct. 2016, pp. 183–192.

[18] Stream Reservation Protocols (SRP) Enhancements and Performance
Improvements, IEEE Std. 802.1Qcc, 2018.

[19] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre et al., “Convolutional
networks on graphs for learning molecular fingerprints,” in Proc. of the
NeurIPS, vol. 28, 2015.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. of the ICLR, 2017.

[21] J. Gilmer, S. S. Schoenholz, P. F. Riley et al., “Neural message passing
for quantum chemistry,” in Proc. of the ICML, ser. ICML’17. JMLR.org,
2017, p. 1263–1272.

[22] J. Zhou, G. Cui, S. Hu et al., “Graph neural networks: A review of
methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.

[23] K. Cho, B. Van Merriënboer, D. Bahdanau et al., “On the properties of
neural machine translation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

[24] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is All you Need,”
in Proc. of the NeurIPS, I. Guyon, U. V. Luxburg, S. Bengio et al., Eds.
Curran Associates, Inc., 2017, pp. 5998–6008.

[25] Y. Bengio, A. Lodi, and A. Prouvost, “Machine Learning for Com-
binatorial Optimization: A Methodological Tour d’Horizon,” European
Journal of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[26] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Proc. of the ICML. Morgan Kaufmann, 1994,
pp. 157–163.

[27] J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed
with Especial Reference to the Rational Foundation of Thermodynamics,
ser. Cambridge Library Collection - Mathematics. Cambridge Univer-
sity Press, 2010.

[28] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229–256, May 1992.

[29] T. Schaul, J. Quan, I. Antonoglou et al., “Prioritized experience replay,”
in ICLR (Poster), 2016.

[30] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Proc. of the NeurIPS. Curran
Associates, Inc., 2019, pp. 8024–8035.

[31] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[32] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing, 2013.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[34] Xilinx. (2021, Jul.) Socs with hardware and software programma-
bility. [Online]. Available: https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html

[35] S. E. Fienberg, “A brief history of statistical models for network
analysis and open challenges,” Journal of Computational and Graphical
Statistics, vol. 21, no. 4, pp. 825–839, 2012.

[36] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[37] TSN Profile for Industrial Automation, IEC/IEEE Std. 60 802, 2018.
[38] Z3Prover. (2021) Github repository of z3prover. [Online]. Available:

https://github.com/Z3Prover/z3
[39] C. Zhong, H. Jia, H. Wan et al., “DRLS: A Deep Reinforcement

Learning Based Scheduler for Time-Triggered Ethernet,” in Proc. of
the ICCCN, Jul. 2021, pp. 1–11.

[40] F. Pozo, W. Steiner, G. Rodriguez-Navas et al., “A decomposition ap-
proach for SMT-based schedule synthesis for time-triggered networks,”
in Proc. of IEEE ETFA, Sep. 2015, pp. 1–8.

[41] F. Boulanger, D. Marcadet, M. Rayrole et al., “A time synchronization
protocol for a664-p7,” in Proc. of IEEE DASC. IEEE, 2018, pp. 1–9.

[42] F. Pozo, G. Rodriguez-Navas, H. Hansson et al., “Smt-based synthesis
of ttethernet schedules: A performance study,” in Proc. of IEEE SIES.
IEEE, 2015, pp. 1–4.

[43] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuristic list scheduler
for time triggered traffic in time sensitive networks,” ACM SIGBED
Review, vol. 16, no. 1, pp. 15–20, Feb. 2019.

[44] Y. Li, J. Jiang, and S. H. Hong, “Joint Traffic Routing and Scheduling
Algorithm Eliminating the Nondeterministic Interruption for TSN Net-
works Used in IIoT,” IEEE Internet of Things Journal, pp. 1–1, 2022.

[45] N. Wang, Q. Yu, H. Wan et al., “Adaptive Scheduling for Multicluster
Time-Triggered Train Communication Networks,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 2, pp. 1120–1130, 2019.

[46] Y. Huang, S. Wang, T. Huang et al., “Online Routing and Scheduling
for Time-Sensitive Networks,” in Proc. of IEEE ICDCS, Jul. 2021, pp.
272–281.

[47] H. Jia, Y. Jiang, C. Zhong et al., “TTDeep: Time-Triggered Scheduling
for Real-Time Ethernet via Deep Reinforcement Learning,” in Proc. of
IEEE GLOBECOM, 2021, pp. 1–6.

[48] I. Bello, H. Pham, Q. V. Le et al., “Neural Combinatorial Optimization
with Reinforcement Learning,” arXiv:1611.09940 [cs, stat], Jan. 2017.

[49] T. Barrett, W. Clements, J. Foerster et al., “Exploratory Combinatorial
Optimization with Reinforcement Learning,” in Proc. of the AAAI,
vol. 34, no. 04, Apr. 2020, pp. 3243–3250.

[50] A. Laterre, Y. Fu, M. Jabri et al., “Ranked reward: Enabling self-play
reinforcement learning for combinatorial optimization,” in Proc. of the
NeurIPS, 2018.

[51] P. Almasan, J. Suárez-Varela, A. Badia-Sampera et al., “Deep Rein-
forcement Learning meets Graph Neural Networks: Exploring a routing
optimization use case,” arXiv:1910.07421 [cs], Feb. 2020.

[52] K. Rusek, J. Suárez-Varela, P. Almasan et al., “RouteNet: Leveraging
Graph Neural Networks for network modeling and optimization in
SDN,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 10, pp. 2260–2270, Oct. 2020.

[53] H. Zhu, V. Gupta, S. S. Ahuja et al., “Network Planning with Deep
Reinforcement Learning,” in Proc. of ACM SIGCOMM, 2021, p. 14.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:31:59 UTC from IEEE Xplore. Restrictions apply.

