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Abstract—Accurate forecast of citywide passenger demand
helps online car-hailing service providers to better schedule
driver supplies. Previous research either uses only passenger
order history and fails to capture the deep dependency of
passenger demand, or is restricted on grid region partition
that loses physical context. Recent advance in mobile traffic
analysis has fostered understanding of city functions. In this
paper, we propose FlowFlexDP, a demand prediction model that
integrates regional crowd flow and applies to flexible region
partition. Analysis on a cellular dataset covering 1.5 million
users in a major city in China reveals strong correlation between
passenger demand and crowd flow. FlowFlexDP extracts both
order history and crowd flow from cellular data, and adopts
Graph Convolutional Neural Network to adapt prediction for
regions of arbitrary shapes and sizes in a city. Evaluation on a
large scale data set of DiDi Chuxing from cellular data shows
that FlowFlexDP accurately predicts passenger demand and
outperforms the state-of-the-art demand prediction methods.

I. INTRODUCTION

Online car-hailing service, for its efficiency and comfort,
performs as pivotal public transportation in the mobile age [1].
To hire a vehicle, a passenger can simply submit his desired
pick up location and the destination to the online service
provider (e.g. Uber, DiDi, Lyft), who then delivers the re-
quest to close-by drivers. Despite its convenience, the online
car-hailing service still suffers from the imbalance between
demand of passengers and supply of drivers in some local
regions. For example, a driver hardly gets any request during
the empty cruise, as few passengers near his cruise route
request the service. Meanwhile, a passenger finds it is difficult
to get the ride, especially in bad weather and rush hours, as
overwhelmingly large number of requests are sent at the same
time in the same region. Hence, it is necessary yet challenging
for service providers to predict demand of passengers, in order
to foreseeingly schedule drivers.

Existing works have promoted passenger demand prediction
with elaborate models, including parametric models [2], [3]
and neural network based models [4], [5]. The main idea
is to relate passenger demand in different spatial region and
time interval with local historical passenger order data [6],

supplemented with weather [5] and traffic [7] data. However,
the major limitation of using passenger order data lies in its
scale; that is, the passenger coverage of the order data is
restricted within the group of passengers who install the spe-
cific car-hailing apps on their mobile devices. Furthermore, the
order data cannot fully characterize the passenger demand in
local regions, which is potentially impacted by characteristics
of region populations (e.g. crowd flow, human mobility and
behaviour).

As mobile phones deeply penetrate everyday life of human,
cellular data accommodates a larger user population and acts
as an ideal tool for analysis of cities operation, such as
cellular traffic prediction [8], city function discovery [9] and
population composition [10]. This paper seeks to advance the
state-of-the-art of passenger demand prediction by modelling
with cellular data. Note that cellular data not only reveals
historical information of passenger order, which can be re-
solved from the URL of cellular packets, but also characterizes
the region populations from various aspects. By integrating
multi-dimensional features available in cellular data, passenger
demand can be more accurately predicted. However, passen-
ger demand still has some complex properties, and leads to
challenges for prediction:

• Spatial and temporal correlation. The passenger demand
in specific region is correlated with not only historical
demand in this region, but also that in other regions,
whose contributions are inversely proportional to the dis-
tances between two regions [11]. Meanwhile, the impact
of the historical demand is also inversely proportional
to the length between two time points. Furthermore, the
passenger demand exhibits periodicity, with rush hours in
the morning and the evening, and trough in the midnight.

• Region characteristics. Besides the historical demand, the
passenger demand in a specific area is also dependent on
the characteristics in this area, such as weather, traffic
and crowd flow. Using only historical order and weather
data, existing works [6] cannot predict and further adapt
to potential huge passenger demand due to burst crowd
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Fig. 1: System Architecture. The system consists of 4 modules: database module, pre-processing module, deep learning module,
and visualization and evaluation module.

outflow (e.g. matches, concerts). Hence, in addition to
historical order, the crowd flow should be considered.

• Region partition. Existing works [5] partition a city in
to regular grids (i.e. regions), and apply CNN to the
regions to achieve prediction. Yet in practice, the city
is partitioned into geographically irregular regions by
the government; and drivers are scheduled to cruise in
predefined functional regions. Thus, it is necessary to
predict passenger demand on a flexible region partition
of the city.

To address these challenges, we propose FlowFlexDP, a
deep learning model that predicts passenger demand with
cellular data. First, FlowFlexDP divides the demand series
into hourly correlation series and daily correlation series
to model temporal correlation, and uses distances between
regions to model spatial correlation. Second, FlowFlexDP
extracts historical order records, as well as estimates crowd
flows of regions from cellular data. Meanwhile, factors in-
cluding weather, holidays, time-of-day, and day-of-week are
also carefully considered in FlowFlexDP. Last but not least,
FlowFlexDP adopts GCNN [12] to adapt to flexible region
partition, and uses residual network [13] to deepen the neural
network, in order to learn the relations between far away
regions.

In summary, the main contributions are as follows:

• We demonstrate cellular data as a rich data source for
passenger demand prediction, which have been largely
overlooked and unexplored previously. We extract histor-
ical order, crowd flow from cellular data, and develop the
prediction model accordingly. As far as we are aware of,
it is the first work that uses crowd flow information from
cellular traffic for passenger demand prediction.

• We devise a novel neural network architecture that uses
GCNN to enable demand prediction on flexible region
partition, which is more realistic than regular partition.

TABLE I: Corresponding results of ordering taxis

Action URL(api.diditaxi.com.cn/)

Start a order api/v2/p neworder
Check order status api/v2/p getorderstatus
Get order detail api/v2/ p getorderdetail
Request payment info api/v2/p getpayinfo
Comment api/v2/p comment

• We extract a large scale real data set of DiDi Chuxing
from cellular traffic data, and conduct extensive exper-
iments. The results show that FlowFlexDP achieves a
more accurate prediction accuracy. By considering crowd
flow data, and accommodating flexible region partition,
FlowFlexDP outperforms existing previous models.

II. SYSTEM OVERVIEW AND DATA SOURCE

In this section, we briefly introduce the system architecture
and our data source.

A. System Overview

As shown in Fig. 1, our prediction system consists of
4 modules: database module, pre-processing module, deep
learning module, and visualization and evaluation module.
The database server module stores the big cellular data
and provides retrival and aggregation services for fast pre-
processing. In the pre-processing module we clean the data and
extract the passenger information. The deep learning module
FlowFlexDP is the key component of our system and it takes
four kinds of data to get precise passenger demand prediction.
The detail of FlowFlexDP will be introduced in later section.
In the visualization and evaluation module, we evalute the
performance of the system and generate real-time heatmaps
of passenger demand to advice drivers where to pick up
passengers.
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Fig. 2: Spatial distribution of urban passenger demand at different times during a day.

B. Data Source

1) Cellular Data: Our dataset was collected by a major
cellular carrier in a big city of China. Each record in the dataset
contains bidirectional flow information with the following key
fields: a unique anonymized user ID, the flow create time, the
flow connnected cell tower ID, App ID, URL, etc. The dataset
covers from Dec 5th, 2016 to Feb 4th, 2017 and contains
more than 2.9 × 1010 mobile cellular records with 8 × 103

cell towers and 1.5 × 106 mobile users covered. To the best
of our knowledge, the dataset is one of the largest urban-scale
cellular traffic dataset in terms of the number of mobile users
and cell towers.

Since our aim is to predict passenger demand, we use the
location of the cell tower as an estimate for each mobile
user. The cell tower ID in each record corresponds to a cell
tower geographical coordinates. Note that a mobile device may
not be associated to the nearest cell tower [14]. However,
a location accuracy of 70m is achievable with the coverage
information of cell towers [15].

In order to understand the meaning behind the URLs
in our data set, we did a field experiment to capture the
HTTP and SSL/HTTPS header by some HTTP proxy tool
(i.e., Charles [16]) when taking DiDi taxis and other types
of cars (e.g. DiDi Express, DiDi Premier). The collected
URLs are matched with the volunteer’s user behaviour. The
corresponding results of ordering a taxi are shown in Table I.
The records with the same URL and URI are recognized as the
citywide passenger demand, which cover more than 5.4× 105

passengers. The spatial distribution of urban passenger demand
at different times during a day is shown in Fig. 2.

2) External Data: Besides cellular data, weather conditions
(i.e., weather state, temperature, wind speed and visibility),
time-of-day, day-of-week and holidays are utilized for pre-
diction due to their key influence on passenger demands. For
better prediction, we collect the corresponding weather data
from the Dark Sky API [17]. The overview of the weather
data is illustrated in Table II.

TABLE II: Weather data

Weather data Data condition

Weather states 11 types
Temperature (◦C) [-21.24, 6.11]
Wind speed (m/s) [0, 7.15]
Visibility (km) [0.16, 16.09]

III. PROBLEM FORMULATION

In this section, we introduce the terms of use and formalize
the passenger demand forecasting problem.

Definition 1 (Passenger Demand): Let R = r1, r2, · · · , rN
be the set of N region, and the passenger demand of a region ri
in a given time window [t, t+∆t] is defined as Dt(ri), where
Dt(ri) is the number of passenger taking a taxi at region ri.
And Dt = {Dt(ri)|i = 1, . . . , N} represents the sequence of
passenger demand of all regions at time t.

Definition 2 (Crowd Outflow): Crowd Outflow [18] of
a region means the number of people leaving the region.
Similarly, we use Pt(ri) to denote the set of people located
inside the region ri at a given time interval [t, t + ∆t]. The
crowd outflow of the region ri at the time t is defined as
Ct(ri) = Pt(ri) \Pt+1(ri). And Ct = {Ct(ri)|i = 1, . . . , N}
denotes the sequence of outflow of all regions at time t.

Given the historical observations including the num-
ber of passenger demand D1, D2, · · · , Dt, crowd outflow
C1, C2, · · · , Ct and the external data, our goal is to build a
deep learning model to predict Dt+1.

IV. REGION PARTITION

Although many prediction approaches for spatial data re-
quire region partition in the form of grid, flexible region
partition is more attractive since regions with semantic or
administrative meanings often demonstrate irregular shapes
rather than grids. As a result, flexible region partition is
expected for city planners, ride service managers, last but not
the least, car drivers. To extract semantic regions, we design
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Fig. 3: Process of region partition: (a) entire city partitioned
by the primary roads; (b) the finer-grained partition.

our region partition algorithm partitioning the whole city into
regions by road network.

Initially, we partition the entire city into blocks by the pri-
mary roads. Particularly, we extract the primary road network
from OpenStreetMap [19] and convert the map to a binary
image where roads are represented by black lines. Further,
we apply “bwlabel” algorithm [20] to detect the connected
components as partition result. Fig. 3a shows the primary
region partition and we get 22 regions.

Partition with only primary road is insufficient because the
center regions take a great percentage of passenger demands.
Besides, finer-grained partition is more helpful to drivers.
Accordingly, we further partition the city by the main sec-
ondary roads if the passenger demand of any block is too
high. In our work, we assess the passenger demand of each
block in four different time, i.e. weekday morning rush time
Tdm, weekday evening rush time Tde, weekend morning rush
time Tem, and weekend evening rush time Tee. We rank the
passenger demand of the four time and choose the first 3
blocks respectively. If the latitude span or longtitude span
of the selected block is larger than a certain distance dspan,
we partition it by the secondary road in it. The finer-grained
partition is shown as Fig. 3b and the number of regions is 35.

V. DEEP LEARNING ARCHITECTURE

In this paper, we design a novel deep learning architecture
FlowFlexDP to model and predict the passenger demand for
each region. Fig. 4 illustrates the architecture of FlowFlexDP.

In our model, historical passenger demand, historical crowd
outflow and global external factors are fed as the input.
Historical passenger demand is decomposed into passenger de-
mand hourly sequence and passenger demand daily sequence.
Similarly, historical crowd outflow is decomposed into crowd
flow hourly sequence and crowd outflow daily sequence. Each
of the sequence components is fed into deep neural networks,
which are made up of GCNN and ResUnits. Global external
factors (i.e., weather data and time metadata) are fed into two-
layer fully-connected neural networks respectively. Next, we
apply the fusion operation to the output of the four sequence
components, and merge the fusion output with the outputs of
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Fig. 4: The architecture of FlowFlexDP

the fully-connected neural networks. The detail of our model
is explained as below.

A. Graph Convolutional Neural Network

As we know, the passenger demand in one region is not only
determined by the context of the region, but also influenced
by the context in other regions [11]. And the dependency
between nearby regions is stronger than distant regions. To
model the spatial dependency, we apply GCNN in our network
architecture. GCNN is designed for generalizing CNNs from
low-dimensional regular grids where image, video and speech
are represented, to high-dimensional irregular domains to
learn the local, stationary and compositional spatio-temporal
features. Formally, we model the city regions as a weighted
graph G = (V,E,W ), where V = {ri|i = 1, 2, · · · , N} is
a finite set of regions. E = {(ri, rj)|ri and rj are adjacent}
is a set of edges. W is the adjacency matrix. The normalized
graph Laplacian L of G is defined as:

L = In −D− 1
2WD− 1

2 (1)

where D is a diagonal matrix with Dii =
∑
jWij and In is the

identity matrix. Since L is a real symmetric positive semidefi-
nite matrix, it has a complete set of orthonormal eigenvectors
{ul}nl=1 and real nonnegative eigenvalues {λl}nl=1. The filter
operation g on a graph signal x ∈ Rn×dx is gθ(Λ) = diag(θ),
where θ ∈ Rn is a vector of Fourier coeffcients learned by the
neural networks. The convolutional operation on x is defined
as:

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx (2)

where U = [u1, · · · , un] ∈ Rn×n is the matrix of eigenvectors
and Λ ∈ Rn×n is the diagonal matrix of eigenvalues of the
normalized graph Laplacian L.
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(a) Office Region (b) Residential Region (c) Dec 21st-23th, 2016 (blue), Jan 4th-6th, 2017
(green)

Fig. 5: Passenger demand of one week in different regions and effects of holidays and weather: (a) passenger demand of one
week in office region; (b) passenger demand of one week in residential region; (c) effect of snow in office region.

Fig. 6: The residual unit of GCNN.

Furthermore, computing the eigendecomposition of L is
prohibitively expensive for large graphs. To overcome this
problem, a polynomial filter is used and defined as:

gθ(Λ) =

K−1∑
k=0

θkΛk (3)

where the parameter θ ∈ RK is a vector of polynomial
coefficients and K is a super parameter. Since dG(i, j) > K

implies (LK)i,j = 0, where dG is the shortest path distance.
Consequently, spectral filters represented by K-order polyno-
mials of the Laplacian are exactly K-localized.

In our architecture, we apply GCNN with K-order poly-
nomial filter to learn the spatial dependency. Since K-order
polynomial filter can learn the spatial K-localized spatial
dependency, more deeper stacked GCNN layers can learn the
city-scale spatial dependency.

B. GCNN with Residual Learning (ResGCNN)

In order to capture the long-distance spatial dependency
between regions, we need to use a lot of consecutive convolu-
tional layers. Although training through the ReLU activation
function and regularization can be more effectiveness, we
still need to solve the problem of deeper networks. So we
apply residual learning [13] to GCNN as traditional CNN-
based residual learning. Residual learning allows deeper neural
networks to be effectively trained and has made great success
in deep learning area. A residual unit can be represented as:

xl+1 = xl + F (xl) (4)

where xl+1 and xl are the input and output of the l-th unit
in the network, F is the mapping function. Fig. 6 shows
the structure of residual unit of GCNN. In our work, we

add shortcut connections for each two-layer GCNN. The
component works as follows: the input data will first be fed
into a GCNN layer to be encoded into fixed dimension tensor
and then the output will continually be fed into L residual
GCNN layers. Finally, the output is input into another GCNN
layer to encode the dimension for fusion operation.

C. Hourly and Daily Sequences Fusion

ResGCNN can capture the spatial dependencies, but it fails
to capture the temporal denpendencies. In order to learn
the spatio-temporal dependencies, we divide the passenger
demand sequences into two parts, the hourly sequence and
daily sequence. For hourly sequence, there is no doubt that
the passenger demand of a time is affected by the previous
hours. As for daily sequence, Fig. 5a and Fig. 5b depict
the time dynamics of passenger demand of office region and
residential region in one week, respectively. Obviously that
passenger demand has strong time dependency and periodicity
for days. So by extracting the daily sequence we can learn this
periodicity.

Specifically, we aggregate the passenger demand by one
hour time interval. The corresponding hourly sequence at t
is [Dt−h, Dt−(h−1), · · · , Dt−1] and daily sequence at t is
[Dt−T ·d, Dt−T ·(d−1), · · · , Dt−T ] ,where h is the length of
hourly time intervals and d is the length of daily sequence,
T=24 for twenty-four hours. With the GCNN layer and and L
residual GCNN layers, the output of hourly sequence is Dho

and for daily sequence is Ddo.
Regions usually show different time characteristic from

other regions. As shown in Fig. 5a and Fig. 5b, in office
region, the evening peak values are much higher than morning
peak values while the peak values on weekdays are much
higher than weekends, which makes sense for people do not
need to work on weekends. In residential region, the peak
values on weekends are similar with the ones on weekdays.
So the hourly and daily sequences may have different influence
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Fig. 7: The cross correlation coefficient of passenger demand
sequence and crowd outflow sequence in each region.

degrees. We fuse the two components with parametric-matrix-
based fusion [21], which is defined as

Do = Who ◦Dho +Wdo ◦Ddo (5)

where ◦ is Hadamard product, which means element-wise mul-
tiplication. Who and Wdo are learnable parameters, which can
change the influence degrees of hourly and daily sequences.

D. Crowd Outflow Sequences Fusion

Fig. 7 illustrates the strong correlation between crowd
outflow and passenger demand. Since passengers are a
small part of crowd outflow, the outflow information is
very helpful for passenger demand prediction. It means
that besides demand history, crowd flow may act as
a new data source for demand prediction. Similarly,
we define the hourly sequence and daily sequence of
crowd outflow at time t as [Ct−h, Ct−(h−1), · · · , Ct−1] and
[Ct−T ·d, Ct−T ·(d−1), · · · , Ct−T ], respectively.

For these two kinds of sequences, we feed them into another
two deep neural networks, respectively. The output of crowd
outflow hourly sequence is Cho and for daily sequence is
Cdo. These sequences are fused with parametric-matrix-based
fusion [21]. This fusion method uses Hadamard product to
element-wise multiply learnable parameter and output vector,
which is defined as

Co = Whc ◦ Cho +Wdc ◦ Cdo (6)

where ◦ is Hadamard product, Whc and Wdc are learnable
parameters. And we fuse the output of passenger demand
sequences and crowd outflow sequences as

Odc = Co +Do (7)

where Odc is the output of the fusion method.

E. External Factors Fusion

Fig. 5a shows the influence of daytype (i.e., weekday or
weekend), Fig. 5c illustrates that in comparison with sunny
days, the demand on snowy days increase sharply, and Fig. 5b
demonstrates the influence of holiday. These observations

insight us to use external data for better prediction accuracy. In
the external factors part, we use weather, holiday, day-of-week
and time-of-day as external factors. Weather data including
weather state (11 types, including sunny, cloudy, light snow,
moderate snow, heavy snow, light rain etc.), temperature, wind
speed and visibility. Since the weather data at future time
interval is unknown, we can use the predicted weather or
exactly the weather of the last time. We divide 24 hours in
each day into 2 parts as time-of-day: inactive hours (0:00-6:00)
and active hours (6:00-24:00). The day-of-week is categorized
to 7 types like Monday, Tuesday, etc.

In our architectue, the weather data and time metadata are
fed into two-layer fully-connected neural network respectively,
each of which has an embedding layer followed by the ReLU
activation function and a layer to map the first layer result into
the same shape as Dt. We define the output of the external
component as Oeh and we use sigmoid fuction to fuse the
output of the external component with the other output parts,
which is defined as

D̂t = σ(Odc +Oeh) (8)

where D̂t is the estimated passenger demand during the tth
time interval.

During the training process of our FlowFlexDP, the goal
is to minimize the mean squared error between the real and
estimated passenger demand. The objective function of our
architecture with α stands for all the learnable parameters is
defined as

min
α

∥∥∥Dt − D̂t

∥∥∥2
2

(9)

The training process of our architecture FlowFlexDP is
showed in Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we present the extensive experimental re-
sults and evaluate our system for the prediction of passenger
demand.

A. Experiment Setting

1) Experimental Setup: For spatio-temporal sequence like
passenger demand and crowd outflow sequence, we use the
Min-Max normalization to scale the data into the range [0, 1].
For the external factors, we use one-hot coding to transform
day-of-week, time-of-day, holidays, weather state into binary
vectors, and use Min-Max normalization to scale the tem-
perature, wind speed and visibility into the range [0, 1]. We
picked the first 65% of timestamps for the training data, the
second 10% is chosen as the validation set and the rest 25%

for testing. The prediction results are re-scaled to the normal
values to calculate the prediction accuracy.

2) Parameters Setting: TensorFlow [22] is used to build
our FlowFlexDP model. The batch size is set to 24 and the
epoch is set to a fixed number. The length of hourly sequence
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Algorithm 1: FlowFlexDP Training Algorithm
Input: Historical demand: {D1, D2, · · · , Dn}

Historical crowd outflow: {C1, C2, · · · , Cn}
Weather data: {E1, E2, · · · , En}
Time metadata: {H1, H2, · · · , Hn}
Length for hourly and daily sequences: h, d

Output: FlowFlexDP model with learned parameters
1 Initialize the trianing instances set U ← 0
2 for all available time intervals t(2 ≤ t ≤ n) do
3 Dh = [Dt−h, Dt−(h−1), · · · , Dt−1]
4 Dd = [Dt−24d, Dt−24(d−1), · · · , Dt−24]
5 Ch = [Ct−h, Ct−(h−1), · · · , Ct−1]
6 Cd = [Ct−24d, Ct−24(d−1), · · · , Ct−24]
7 Put ({Dh, Dd, Ch, Cd, Et−1, Ht}, St) into U

8 Initialize all the learnable parameters
9 repeat

10 Randomly extract a batch of instances Ub from U
11 Minimize the objective function within Ub
12 until Convergence citerion met
13 return FlowFlexDP model

h ∈ {3, 4, 5, 6, 7, 8} and the length of daily sequence d ∈
{1, 2, 3, 4, 5, 6, 7, 8}.

B. Performance Evaluation

1) Evaluation Metric: We evaluate our architecture
FlowFlexDP via Root Mean Square Error (RMSE):

RMSE =

√
1

n

∑
i

(Dt(ri)− D̂t(ri))
2

(10)

where D and D̂ are the ground truth and predicted passenger
demand respectively. n is the total number of test predicted
values.

2) Baseline Models: We consider the following six base-
lines to compare with our architecture FlowFlexDP model:

• HA: The Historical Average model predicts the future
passenger demand based on the average value of histori-
cal passenger demand in the corresponding periods. For
example, the demand value of region i during 6:00am-
7:00am is computed by the mean value of all historical
demand from 6:00am to 7:00am in region i.

• ARIMA: The Autoregressive Integrated Moving Average
model has been widely adopted in time series prediction.
In an ARIMA(p, d, q) model, the future value of a
variable is assumed to be a linear function of several past
observations and random errors.

• SARIMA: the Seasonal Autoregressive Integrated Mov-
ing Average model which can capture the seasonality in
time series.

• VAR: Vector Auto-Regressive is a stochastic process
model used to capture the linear interdependence among

TABLE III: Comparisions between 6 baseline methods and 5
variants.

Model RMSE

HA 23.21
ARIMA 16.44
SARIMA 15.29
VAR 13.72
ANN 12.18
LSTM 10.35
GCNN 9.16
ResGCNN 8.97
ResGCNN-D 8.71
ResGCNN-DO 7.13
FlowFlexDP (our model) 7.02

four types of sequences, which is a more advanced spatio-
temporal model.

• LSTM: Long-Short Term Memory is a Recurrent Neural
Network architecture that remembers values over ar-
bitrary intervals. The LSTM model uses all the data,
including historical passenger demand, crowd outflow,
weather data, and time metadata to predict future pas-
senger demand.

• ANN: The Artificial Neural Network employs all the data
with look-back time window K = 6, including historical
passenger demand intensity, crowd outflow, weather data,
and time metadata to predict future passenger demand.

3) Performance Evaluation: We compare the performance
of the 5 variants of our FlowFlexDP model and the 6 base-
line models. For the 5 variants, GCNN is a model without
using residual units and only using the passenger demand
hourly sequence. ResGCNN is the model combines GCNN
and residual learning. ResGCNN-D is the model further adds
the passenger demand daily sequence. ResGCNN-DO further
fuses the crowd outflow hourly and daily sequences. And our
final model FlowFlexDP is a combination of ResGCNN with
passenger demand hourly and daily sequences, crowd outflow
hourly and daily sequences and external factors. Table III
summarizes the performances of all models. From the table,
we can see that all of the 5 variants achieve better performance
than the baseline models by at least 12.99%. Results of GCNN
and ResGCNN show that applying residual units can make
the prediction more accurate. The results of ResGCNN-D and
ResGCNN-DO indicate the effectiveness of adding passenger
demand daily sequence, crowd outflow hourly sequence and
crowd outflow daily sequence. It is noteworthy that by incor-
porating crowd outflow, the prediction accuracy has improved
a lot. Then by accounting for the influence of external factors,
our final FlowFlexDP model obtain an additional improvement
of 1.6% over ResGCNN-DO model which does not fuse with
the external factors influence. Overall, our model FlowFlexDP
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Fig. 8: Comparision of the ground truth(GT) and predicted
passenger demand(PR) by FlowFlexDP.

obtains a better performance than the state-of-the-art demand
prediction methods.

C. Visualization of Results

The visualization of the results is shown in Fig. 8, which de-
picts the heat maps of ground truth and the predicted result at
two different times. We can see that our prediction results are
very close to the real state, which means that our architecture
FlowFlexDP can capture the spatio-temporal characteristics of
the passenger demand and make more accurate prediction.

VII. RELATED WORK

A. Passenger demand prediction

Recently, taxi-passenger demand prediction has become
one of the most important research topics in urban comput-
ing [23]. Passenger demand prediction relies on a predictive
model and geographically labelled demand records through
various localization technologies, such as GPS, WiFi position-
ing [24]–[26], cell tower positioning [27], etc. [2] proposed
a model combined the Poisson Model and ARIMA and [3]
implemented and compared three models, i.e., the Markov
algorithm, Lempel-Ziv-Welch algorithm, and neural network.
However, aforementioned studies work on GPS history data,
which has a bias between the pick-up records and passenger
demand. With the car-hailing service performing as pivotal
public transportation, passenger demand prediction on car-
hailing system also attracts researchers’ attentions [28]. In
order to predict passenger demand, [29], [30] presented non-
parametric models, but they estimate passenger demand with-
out any additional information such as weather and holidays.
In our work, we incorporate not only weather data, but also
crowd outflow. Some researchers aimed to predict passenger

demand with deep learning models [5], [27]. Although similar
with our work, these works are only applicable on fixed grid
region partition or fail to capture the complex spatial depen-
dency of passenger demand. [27] introduced residual learning
into passenger demand prediction. However, the model uses
fully connected layers to model the passenger demand, which
is improper for learning the spatio-temporal dependencies of
demand among regions in large-scale cities. All these methods
are target to the number of pick-ups, but because of some
passenger requests would be canceled or cannot match drivers
successfully, the number of pick-ups cannot reflects the actual
passenger demand in the real situation. [7] proposed a linear
regression model and used features over space, time, mete-
orology and event domains to predict UOTD (Unit Original
Taxi Demand), which reflects the complete original passenger
demands for a given time and space. But to an extent, it is
difficult to build a high-precision model if only uses the linear
regression model. In our work, we propose a deep neural
network to predict the complete original passenger demand
on any shaped region, making it more practical.

B. Cellular traffic analysis

The cellular footprints of human activities have fostered
research on the intersection between human and network dy-
namics [31] and enabled a set of applications, including human
mobility modelling [32], land usage [9], data traffic engineer-
ing [33], public traffic [34], [35] and social interactions [36].
In this paper, we focus on investigating the passenger demand
patterns via crowd flow extracted from cellular data, which
advances the application of cellular footprints on passenger
demand prediction, and paves a way towards a comprehensive
understanding of the connection among mobile data traffic and
human behaviors.

C. Deep learning

CNN developed by [37] was used to learn the spatial
correlation in network-wide traffic forecasting [38]. But it can
only apply on regular grids, so graph convolutional neural
network is designed for generalizing CNNs from regular grids
to irregular domains [12]. Residual learning allows networks
to have deeper structure [39]. And to capture both spatial
and temporal dependencies, [40] proposed the conv-LSTM
network, which is applied to predict passenger demand [5].
But such model cannot capture very long-range temporal
dependencies and is only applicable on regular grids. In this
paper, we mainly propose employing the graph convolutional
neural network and residual learning to model spatio-temporal
passenger demand and crowd outflow data.

VIII. CONCLUSION

We propose a deep learning model FlowFlexDP, which uses
GCNN for predicting passenger demands on flexible region
partition, based on weather, holidays, historical order and
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crowd flow extracted from cellular data. Evaluation results on
a large-scale real data set show that our model outperforms
existing models.
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