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Abstract—Modern mobile devices are equipped with multiple antennas, which brings various wireless sensing applications such as

accurate localization, contactless human detection, and wireless human-device interaction. A key enabler for these applications is

phased array signal processing, especially Angle of Arrival (AoA) estimation. However, accurate AoA estimation on commodity devices

is non-trivial due to limited number of antennas and uncertain phase offsets. Previous works either rely on elaborate calibration or

involve contrived human interactions. In this paper, we aim to enable practical AoA measurements on commodity off-the-shelf (COTS)

mobile devices. The key insight is to involve users’ natural rotation to formulate a virtual spatial-temporal antenna array and conduce a

relative incident signal of measurements at two orientations. Then by taking the differential phase, it is feasible to remove the phase

offsets and derive the accurate AoA of the equivalent incoming signal, while the rotation angle can also be captured by built-in inertial

sensors. On this basis, we propose Differential MUSIC (D-MUSIC), a relative form of the standard MUSIC algorithm that eliminates the

unknown phase offsets and achieves accurate AoA estimation on COTS mobile devices with only one rotation. We further extend D-

MUSIC to 3-D space, integrate extra measurements during rotations for higher estimation accuracy, and fortify it in multipath-rich

scenarios. We prototype D-MUSIC on commodity WiFi infrastructure and evaluate it in typical indoor environments. Experimental

results demonstrate a superior performance with average AoA estimation errors of 13� with only three measurements and 5� with at

most 10 measurements. Requiring no modifications or calibration, D-MUSIC is envisioned as a promising scheme for practical AoA

estimation on COTS mobile devices.

Index Terms—Channel state information, angle of arrival, phased array calibration

Ç

1 INTRODUCTION

RECENT years have witnessed the conceptualization and
development of wireless sensing, especially using multi-

antenna devices. Various innovative systems are designed to
localize and track mobile devices accurately [1], detect and
pinpoint human movements contactlessly [2], and enable
human-device interaction wirelessly [3], [4]. A key to such
applications is to enable phased array signal processing,
which makes various comparisons of signals received from
each of the antennas of commodity devices. Particularly,
deriving spatial direction of incoming wireless signals, i.e.,
the Angle of Arrival (AoA), serves as the basis for a number
of applications including accurate indoor localization [5],
secure wireless communication [6], wireless coverage confin-
ing [7] and spatial-aware device interaction [8].

Despite the potential for a myriad of wireless sensing
applications, accurate AoA measurement is non-trivial on
commodity devices. In principle, it is possible to obtain the
incident signals’ directions with a large antenna array. Yet
most commercial mobile devices are installed with limited
number of antennas (typically fewer than three), making it
infeasible to directly derive precise AoA measurements.
Even worse, the uncertain phase offsets on commodity WiFi
devices can dramatically deteriorate the performance of
classical AoA estimation algorithms e.g. MUltiple SIgnal
Classification (MUSIC) [9], leading to unacceptable AoA
estimation errors. Pioneer works that achieve accurate AoA
measurements either work only for fixed devices with
known relative locations between transceivers [10], or
involves contrived human intervention to emulate an
antenna array to perform sophisticated Synthetic Aperture
Radar (SAR) [11]. The vision of AoA estimation on Com-
mercial Off-The-Shelf (COTS) mobile devices without extra
efforts entails great challenges and still remains open.

In this paper, we ask the question: can we achieve accurate
AoA measurements on COTS mobile devices without modification
and with minimal human interaction? As illustrated in Fig. 1,
the key insight is to involve rotation, a natural and angle-
aware user motion, to formulate a virtual spatial-temporal
antenna array and a relative incident wireless signal. Specifi-
cally, conventional AoA estimation schemes either formulate
a spatial array (via physical antennas) or temporal array (via
SAR). Yet we take the difference between measurements of
one antenna array at two orientations and transform two
incident signals into an equivalent relative incident signal.

� K. Qian, Z. Yang, X. Wang, and Y. Liu are with the School of Software
and Tsinghua National Laboratory for Information Science and Technol-
ogy, Tsinghua University, Beijing 100084, China.
E-mail: {qiank10, hmilyyz, darenwang11, yunhaoliu}@gmail.com.

� C. Wu is with the School of Software and Tsinghua National Laboratory
for Information Science and Technology, Tsinghua University, Beijing
100084, China and the Jiangsu High Technology Research Key Laboratory
for Wireless Sensor Networks, Jiangsu 210024, China.
E-mail: wucs32@gmail.com.

� Z. Zhou is with the Computer Engineering and Networks Laboratory,
ETH Zurich, Zurich 8092, Switzerland. E-mail: zzhou@tik.ee.ethz.ch.

Manuscript received 29 May 2016; revised 6 Nov. 2017; accepted 19 Nov.
2017. Date of publication 28 Nov. 2017; date of current version 29 June 2018.
(Corresponding author: Kun Qian.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2017.2778155

1820 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 8, AUGUST 2018

1536-1233� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 07:07:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4971-8075
https://orcid.org/0000-0003-4971-8075
https://orcid.org/0000-0003-4971-8075
https://orcid.org/0000-0003-4971-8075
https://orcid.org/0000-0003-4971-8075
https://orcid.org/0000-0002-9700-4627
https://orcid.org/0000-0002-9700-4627
https://orcid.org/0000-0002-9700-4627
https://orcid.org/0000-0002-9700-4627
https://orcid.org/0000-0002-9700-4627
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
mailto:
mailto:
mailto:


Such a spatial-temporal formulation enjoys two advantages:
(1) Since the intrinsic phase offset is unknown yet constant
for each individual antenna, taking the differential phase on
two measurements naturally remove the phase offset since
the antennas are identical. (2) Since the phase measurements
of the equivalent incident signal are free of phase offset, the
equivalent incident angle can be easily derived using stan-
dard AoA estimation algorithms. Furthermore, the equiva-
lent incident angle is coupled with the rotation angle. Given
the rotation angle measured by built-in inertial sensors on
modern mobile devices, it is feasible to obtain the AoAs
before and after rotation with only one rotation. To codify
the above insights into a working system, triple challenges
reside: (1) Can we obtain unique AoA measurements using mini-
mal rotations? (2) Since wireless signals propagate in 3-D space,
can we derive both the azimuth and elevation of each AoA?
(3)How to extend the scheme to multipath-rich scenarios?

To address these challenges, we propose Differential
MUSIC (D-MUSIC), a relative form of the standard MUSIC
algorithm that is free of the phase offset for COTS mobile
devices. It works by employing users’ natural behaviour of
rotating handheld mobile devices and measures the phase
information before and after turning via an antenna array as
well as records the rotation angle via built-in gyroscope.

To obtain unique solutions of absolute AoAs on relative
phase measurements, D-MUSIC further take extra measure-
ment at some orientation during the rotation in addition to
the measurements before and after turning, to ensure mini-
mal human interaction.

To decompose both the azimuth and elevation compo-
nents of each AoA, D-MUSIC exploits the spatial geometric
relationships between transceivers during rotation, making
D-MUSIC capable of operating in 3-D space with arbitrary
transmitter and receiver heights. To fortify D-MUSIC in
severe multipath scenarios, we feed D-MUSIC into standard
MUSIC algorithms as an auto phase calibration. Since the
calibration only needs to be conducted once, D-MUSIC does
not exert awkward operations on mobile users while signifi-
cantly enhances AoA measurements even under multipath
environments.

We conducted extensive experiments in various indoor
environments to validate the effectiveness and performance
of D-MUSIC. Experimental results show that D-MUSIC

derives AoA with an average estimation error of 13�, while
standard MUSIC totally fails to yield correct AoA estimation.
Particularly, comparable AoA accuracy also holds in 3-D
space.We also integrateD-MUSIC as an auto phase correction
for previous calibration-based schemes, which yields similar
accuracy compared to those obtained by precise manual cali-
bration. Since D-MUSIC achieves delightful performances
with neither hardwaremodifications nor contrived user inter-
vention, we envision it as a promising step towards practical
AoA estimation on commodity mobile WiFi receivers, which
underpins new insights for plentiful applications in wireless
sensing.

In summary, the main contributions are as follows:

� We present a novel differential MUSIC algorithm that
enables AoA estimation on COTS mobile devices by
formulating a virtual spatial-temporal antenna array.
D-MUSIC operates with only natural and easy user
actions, requiring no hardware modifications, cum-
bersome calibration, or contrived human intervention.

� We extend the applicability of D-MUSIC to 3-D cases
with diverse transmitter and receiver heights, which
exceeds the achievements of previous schemes. We
further integrate multiple measurements from multi-
ple orientations to form a larger spatial-temporal
antenna array for higher estimation accuracy. In
addition to direct AoA measurements, D-MUSIC can
also be employed to tune the unknown phase offsets
for numerous applications built upon phased array
signal processing, even in multipath-rich scenarios.

� We implement D-MUSIC on commodity WiFi devi-
ces and validate its effectiveness in various indoor
environments. Experimental results demonstrate
that D-MUSIC outperforms previous approaches
with existence of unknown phase offsets, achieving
average estimation error of 13� with basic measure-
ments at 3 orientations and 5� with measurements at
most 10 orientations.

A conference version of this work can be found in [12]. In
this paper, we further provide experimental results related
to performance of D-MUSIC with detailed technical and
implementation issues, and demonstrate the potential ver-
satility of D-MUSIC with different implementation settings.
We also provide detailed discussion on limitations of cur-
rent version of D-MUSIC, and point out the directions of
future work of D-MUSIC. Finally, we survey the state-of-art
work on AoA-based indoor localization, and explicitly state
the difference between D-MUSIC and other work.

The rest of the paper is organized as follows. We provide
a primer on AoA estimation and the root causes of AoA esti-
mation errors in Section 2, and detail the principles and
designs of D-MUSIC in Section 3. Section 4 evaluates the
performance of D-MUSIC. Finally we review related work
in Section 6 and conclude in Section 7.

2 PRELIMINARIES

This section provides a primer on AoA estimation using the
standard MUSIC algorithm, followed by an introduction on
the raw phase measurements available on commodity WiFi
devices, as well as the impact of phase measurement noise
on AoA estimation.

Fig. 1. An illustrative example of D-MUSIC.
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2.1 Angle of Arrival Estimation

MUltiple SIgnal Classification [9] is one of the most com-
monly adopted algorithm for AoA estimation. It analyses the
incident signals on multiple antennas to find out the AoA of
each signal. Specifically, supposeD signals F1; . . . ; FD arrive
from directions u1; . . . ; uD at M > D antennas. The received
signal at the ith antenna element, denoted as Xi, is a linear
combination of theD incident wavefronts and noiseWi

X1

X2

..

.

XM

2
66664

3
77775 ¼ aðu1Þ aðu2Þ . . . aðuDÞ½ �

F1

F2

..

.

FD

2
66664

3
77775þ

W1

W2

..

.

WM

2
66664

3
77775;

or

X ¼ AFþW (1)

where aðuiÞ is the array steering vector that characterizes
added phase (relative to the first antenna) of each receiving
component at the ith antenna. A is the matrix of steer vec-
tors. As shown in Fig. 2a, for a linear antenna array with ele-
ments well synchronized,

aðuÞ ¼

1

e�j2pd
�
cos u

e�j2p2d� cos u

..

.

e�j2p
ðM�1Þd

� cos u

2
66666664

3
77777775
: (2)

Suppose Wi � Nð0; s2Þ, and Fi is a wide-sense stationary
process with zero mean value, the M �M covariance
matrix of the received signal vectorX is

S ¼ XX�

¼ AFF�A� þWW�

¼ APA� þ s2I;

(3)

where P is the covariance matrix of transmission vector F.
The notation ð	Þ� represents conjugate transpose and ð	Þ rep-
resents expectation.

The covariance matrix S has M eigenvalues �1; . . . ; �M

associated with M eigenvectors e1; e1; . . . ; eM . Sorted in a
non-descending order, the smallest M �D eigenvalues cor-
respond to the noise while the rest D correspond to the D
incident signals. In other word, the M-dimension space can
be divided into two orthogonal subspace, the noise subspace
EN expanded by eigenvectors e1; . . . ; eM�D, and the signal

subspace ES expanded by eigenvectors eM�Dþ1; . . . ; eM (or
equivalentlyD array steering vector aðu1Þ; . . . ; aðuDÞ).

To solve for the array steering vectors (thus AoA),
MUSIC plots the reciprocal of squared distance QðuÞ for
points along the u continuum to the noise subspace as a
function of u (Fig. 2b)

QðuÞ ¼ 1

a�ðuÞENEN
�aðuÞ (4)

This yields peaks in QðuÞ at the bearing of incident signals.
As discussed above, MUSIC requires well synchroniza-

tion of antennas, or at least knowledge of relative phase off-
sets between antennas. However, such information is
usually unavailable on unsynchronized commercial-off-the-
shelf wireless devices, which limits the usage of MUSIC.

2.2 Phase Measurement Noise

Phase information can be extracted from PHY layer Channel
State Information (CSI) [13], which is nowadays reachable
from upper layers on off-the-shelf Network Interface
Cards with only slight driver modification[14]. CSI portrays
both amplitude and phase information ofOFDMsubcarriers

HðfkÞ ¼ jHðfkÞjejffHðfkÞ; (5)

where HðfkÞ is the CSI at the subcarrier with central fre-
quency fk. kHðfkÞk and ffHðfkÞ denote its amplitude and
phase.

The raw phase measurements in CSI, however, are pol-
luted by random noises and appear to be meaningless for
practical use. Specifically, the measured phase f̂i for the ith

subcarrier of the jth antenna can be expressed as

f̂
j
i ¼ f

j
i � 2p

ki
N

dþ bj þ Z; (6)

where f
j
i is the real phase that contains AoA information, d

is the timing offset at the receiver, which causes phase error
expressed as the middle term, bj is a constant unknown
phase of the jth antenna, and Z is some measurement noise.
ki denotes the subcarrier index (ranging from -28 to 28 in
IEEE 802.11n) of the ith subcarrier and N is the FFT size (64
in IEEE 802.11 a/g/n).

The phase offset incurred by timing offset d has no impact
on AoA estimation, since it is consistent across all antennas of
a Network Interface Card (NIC), while AoA estimation only
requires the phase difference between individual antennas.
The constant term bj, however, varies across each antenna,
thus deteriorating the fidelity ofMUSIC outputs. As shown in

Fig. 2. AoA estimation by standard MUSIC.
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Fig. 3, the unknown phase offsets can dramatically degrade
the performance of the standard MUSIC, making it incapable
of obtaining true AoAs on commodityWiFi NICs. In practice,
MUSIC would further degenerate into ineffectiveness due to
the facts of severe multipath effects indoors versus limited
number of antennas on COTS devices. As a result, the vision
of practical AoA estimation on commodity mobile devices
still remains unsettled.

3 DIFFERENTIAL MUSIC

Fundamentally constrained by the measurement noise, it is
infeasible to directly apply the standard MUSIC algorithm
on the polluted CSI for accurate AoA estimation. In this sec-
tion, we first propose D-MUSIC, a relative form of the
MUSIC algorithm that eliminates impact of unknown phase
offsets by rotating the antenna array. Then, we introduce
measurement of rotation of array. Finally, we discuss practi-
cal use of D-MUSIC in multipath environment.

3.1 Principle of Differential MUSIC

As discussed in Section 2, when signal arrives at an
N-antenna linear array, the measured phase f̂i for the ith

antenna can be expressed as

f̂i ¼ �2p
ði� 1Þd

�
cos u þ bi þ Z; (7)

where d denotes the antenna spacing, � is the wavelength of
transmission. u denotes the AoA, bi is the constant unknown
phase offset of the ith antenna, and Z is some measurement
noise. To mitigate the impact of the unknown phase offset,
instead of directly measuring AoA, we proposeD-MUSIC to
estimate phase change of array at different orientations.

3.1.1 MUSIC by Turning

The key insight of D-MUSIC is that, the uncertain phase off-
set is constant for each antenna. Thus, the uncertain offset

can be cancelled out by subtracting phases of signals with
different AoA on each antenna. As depicted in Fig. 4a, sup-
pose that the signal propagates from a distant transmitter
and arrives at the antenna array with an AoA of u1. To esti-
mate u1, we rotate the linear array counterclockwise by Du.
Thus the AoA after rotation becomes u2 ¼ u1 þ Du.

Denote the measured phases of the ith antenna before
and after rotation as f̂1;i and f̂2;i. According to Equation (7),
the phase difference caused by rotation is

f̂21;i ¼ f̂2;i � f̂1;i ¼ �2p
ði� 1Þd

�
ð cos u2 � cos u1Þ: (8)

We make two observations on Equation (8) here:

� By subtraction between the measurements at two
orientations, the constant unknown phase offset bi is
successfully cancelled out.

� If we formally define u21 ¼ arccosð cos u2 � cos u1Þ,
Equation (8) becomes the same form as Equation (2).
That is, Equation (8) can be regarded as an equiva-
lent signal with AoA of u21 and phase measurement
f̂21;i on the ith antenna, yet is free of the unknown
phase offset bi.

Based on the above observations, we can thus adopt stan-
dard MUSIC on the phase difference measurements as in
Equation (8) to accurately estimate u21 without the impact of
the unknown phase offset. If we further capture the rotation
Du via the built-in inertial sensors on most smart devices, we
have

u21 ¼ arccosð cos u2 � cos u1Þ
Du ¼ u2 � u1:

�
(9)

Hencewe can derive both u2 and u1 from the above equations.

3.1.2 Obtaining Unique Solutions

The above D-MUSIC principle involves two subtleties to get
unique AoAs.

First, the term f̂21;2 ¼ �2p d
� ð cos u2 � cos u1Þ should be

within an interval of no more than 2p to derive unique solu-
tions from theMUSIC algorithm. This condition is guaranteed
by leveraging the rotation direction and properly setting
antenna spacing. Specifically, since cos u21 ¼ cos u2 � cos u1
has the sign different againstDu ¼ u2 � u1, the range of cos u21
can be identified as either ½�2; 0Þ or ð0; 2� according to the sign
of Du. Furthermore, by using commonly used half-wave-
length antenna spacing [15], i.e. d ¼ �

2, the range of f̂21;2

Fig. 3. Output of MUSIC for a 2-antenna array with random phase offset
ranging from �180� to 180�.

Fig. 4. Principle of D-MUSIC.
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becomes ð0; 2p� or ½�2p; 0Þ, which satisfies the constraint for
unique solution.

Second, replace u2 with u1 þ Du, then we can deduce that

sin u1 þ Du

2

� �
¼ � cos u21

2 sin Du
2

: (10)

However, due to ambiguity of sine function in ½0;p�, two
solutions can be derived from equation (10)

u
0
1 ¼ u1

u
0
2 ¼ u2

(
u
00
1 ¼ p� u2

u
00
2 ¼ p� u1:

(
(11)

To resolve ambiguity, we rotate the array once more and
measure signal phases from an extra direction u3. By perform-
ing D-MUSIC for pairs of measurements ðu1; u2Þ and ðu2; u3Þ,
we get four possible combination of solutions. As in Fig. 4b,
denoting the solutions for u2 in ðu2; uiÞ as u02;i and u

00
2;i (i ¼ 1; 3),

only the combination of correct solutions u
0
2;1 and u

0
2;3 over-

laps. Thus, we can identify the correct AoA by finding the
combination of solutions whose estimations of u2 are most
closed.

3.1.3 Generalizing to 3-D Scenarios

Since wireless signals propagate in a 3-D space, the actual
incident angle consists of an azimuth and an elevation com-
ponent (Fig. 4c). However, commodity smart devices e.g.
smartphones are only equipped with linear antenna arrays.
Thus the MUSIC algorithm can only compute the AoA in a
plane expanded by the array and transmission (as u in
Fig. 4c). To recover both the azimuth and the elevation com-
ponent from the AoA estimate u computed by MUSIC, we
utilize the following observation. The AoA estimate u

reported by MUSIC has the following relation with its azi-
muth (g) and elevation (t)

cos u ¼ cos g cos t: (12)

Following the discussion in Section 3.1, the outputs of
D-MUSIC for pairs of measurements ðu1; u2Þ and ðu2; u3Þ are

cos u21 ¼ ð cos g2 � cos g1Þ cos t
cos u32 ¼ ð cos g3 � cos g2Þ cos t:

(13)

Suppose the horizontal rotation of array satisfies that

Du21 ¼ g2 � g1

Du32 ¼ g3 � g2:
(14)

Then the azimuth and the elevation components of AoAs
can be deduced without ambiguity

g2 ¼ arccot
cos u32 sinDu21 � cos u21 sinDu32

cos u32ð1� cosDu21Þ þ cos u21ð1� cosDu32Þ
g1 ¼ g2 � Du21

g3 ¼ g2 þ Du32

t ¼ arccos
cos u21

cos g2 � cos g1
¼ arccos

cos u32
cos g3 � cos g2

:

(15)

Note that the sign of elevation (t) cannot be solved by D-
MUSIC itself. Yet since WiFi Access Points (AP) are

commonly deployed on the ceiling to achieve larger cover-
age, the elevation (t) tends to be non-negative.

3.1.4 Integrating Multiple Measurements

In Section 3.1, D-MUSIC is performed by calculating phase
difference of two measurements. It is naturally expected
that the estimation accuracy can be improved with more
measurements. However, since measurements contain
time-varying timing offset d (recall Equation (6)), it is impos-
sible to directly integrate more than two measurements. To
remove timing offset d, we further calculate difference of
phase differences of antennas.

Specifically, suppose the linear array hasM antennas and
N measurements are collected during rotation. Denote the
signal phase of the ith antenna at the jth measurement as
f̂j;i. According to Equation (8), the phase difference of the
jth ðj 6¼ 1Þ measurement and the 1st measurement of the ith

antenna is

f̂j1;i ¼ f̂j;i � f̂1;i ¼ �2p
ði� 1Þd

�
ð cos uj � cos u1Þ � 2p

ku
N

ðdj � d1Þ:
(16)

Where uj and dj are the AoA and the timing offset of the jth

measurement respectively. And ku is the subcarrier index. To
remove timing offset d, we further calculate difference of
phase difference of the ith ði 6¼ 1Þ antenna and the 1st antenna

f̂j1;i1 ¼ f̂j1;i � f̂j1;1 ¼ �2p
ði� 1Þd

�
ð cos uj � cos u1Þ: (17)

In 3-D space, cos uj ¼ cos gj cos t, where gj is the azimuth of
the jth measurement and t is the elevation. To unify param-
eters of steer vectors, we replace g with g1 þ Duj1, where
Duj1 is the accumulate rotation angle from the 1st to the jth

measurement

f̂j1;i1 ¼ 4p
ði� 1Þd

�
cos t sin ðg1 þ

Duj1
2

Þ sin Duj1
2

: (18)

Thus, by integrating N measurements, ðM � 1ÞðN � 1Þ vir-
tual antennas are synthesized. Finally, MUSIC is applied to
the virtual antenna array to estimate unified azimuth g1 and
elevation t.

3.2 Measuring Rotation Angle

Recall Equation (9), the measurement accuracy of rotation
angle Du acts as a critical yet controllable factor for accurate
D-MUSIC. In this section,we theoretically quantify the impact
of rotation angle measurement error on D-MUSIC scheme
and describe how to measure rotation angles on mobile devi-
ces. Then we propose an effective method to rectify the rota-
tionmeasurement errors to enable accurateD-MUSIC.

3.2.1 Impact of Rotation Angle Error

For the 2-D case, according to Equation (10), we can derive
the following relationship between the AoA estimation
error (erru1 ) and the rotation measurement error (errDu)

erru1 ¼
1

2
tan u� cot

Du

2

����
����þ 1

� �
errDu; (19)
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where u� ¼ u1 þ Du
2 is the AoA of bisector of u1 and u2. As

seen, the AoA estimation accuracy is closely related to two
properties of the rotation angle Du.

� Direction of the Angular Bisector. The coefficient tan u�
approaches infinity if u� reaches 90�, thus leading to
considerable erru1 . Fig. 5 plots theoretical AoA esti-
mation errors for counterclockwise rotation of con-
stant 30

�
with different start orientations (i.e.

different AoA of bisectors u�). As can be seen, the
closer u� is to 90�, the larger the AoA estimation error
is. However, unacceptable erru1 only occurs when u�
is sufficiently close to 90�. Once u� slightly deviates
from 90�, the coefficient tan u� as well as the estima-
tion error decreases sharply.

� Scale of the Rotation Angle. The coefficient cot Du2
approaches infinity when Du tends to 0�, thus also
leading to unacceptable erru1 . Fig. 6 shows the theo-
retical AoA estimation errors for counterclockwise
rotation of different angles with start orientations
towards the transmitter (i.e. u1 ¼ 90�). As is shown,
the smaller rotation angle Du, the larger AoA estima-
tion error. Consequently, we intend to guide users to
rotate at a larger scale for better AoA estimation
performance.

3.2.2 Measurement of Rotation Angle

As depicted by Figs. 5 and 6, in addition to the two factors
discussed above, AoA estimation accuracy is also effected
by the rotation measurement error errDu.

Generally, the rotation angle can be efficiently measured
by inertial sensors built in modern mobile devices. In
D-MUSIC, we employ gyroscope to monitor rotation
motion. Gyroscope has been widely adopted for device atti-
tude sensing and well demonstrated to be yield sufficiently
accurate results. Particularly, although it is difficult to track
the absolute phone attitude over a long time, the instanta-
neous rotation angle can be measured with high precision.
For instance, the Euler Axis/Angle method can achieve 90th

percentile and medium rotation measurement errors of 7�

and 3� for a one-minute walk [16]. In our situation, if a user
holds a phone in hand and rotates it for a period of three
seconds, the rotation angle measurement error appears to
be less than 0:5�, which is accurate enough for D-MUSIC.

3.3 Dealing with Multipath

Signals propagating indoors suffer from severe multipath
effects, which lead to receptive signals from multiple

transmission paths superimposing at the receiver. As a
result, the superimposed signal phase is deviated from
direct-path signal phase, which may decrease estimation
accuracy of difference of cosine values in Equation (9) and
thus lead to erroneous AoA estimates. In extreme cases
with serious multipath, D-MUSIC might fail to yield accu-
rate AoA estimation results.

A natural alternative to enableAoAmeasurement inmulti-
path scenarios is to exploit the standard MUSIC algorithm on
sufficient antenna elements [9]. However, as previously dis-
cussed, directly applying standard MUSIC on commodity
WiFi infrastructure fails to deriveAoAdue to unknownphase
offsets. Recent innovation Phaser [10] searches through the
phase offset space to find the solution with which standard
MUSIC generates high-quality pseudo-spectrum. A prerequi-
site for Phaser to operate is the prior knowledge of precise rel-
ative direction between the transmitter and the receiver,
which is, however, commonly unavailable in mobile environ-
ments and is manually obtained in Phaser. D-MUSIC can
complement Phaser as an automatic phase calibration by
feeding its outputs as an auto correction input for Phaser. Spe-
cifically, to calibrate phase offsets of a mobile device, we let a
user stay around an AP and rotates the device to estimate the
relative direction towards the AP. Given that the line-of-sight
signal dominates the overall multipath signals in the sur-
rounding areas of an AP, D-MUSIC can output sufficiently
precise results to tune the phase offsets. And by doing this,
Phaser is enabled towork even in various scenarios, including
multipath-dense environments, without elaborate manual
calibration. Note that the uncertain phase offset remains
unchanged after each time the device powers up. Thus it is
unnecessary to perform D-MUSIC and Phaser every time, as
long as the phase offset can be calibrated at the beginning.

In a nutshell, by feeding D-MUSIC into Phaser, we can
automatically correct the phase offsets on both fixed devices
and mobile devices. By doing this, we enable the standard
MUSIC algorithm and its primary variations to accurately
calculate AoA even in multipath-dense scenarios.

4 EXPERIMENTS AND EVALUATION

4.1 Experiment Methodology

Experiment Setup. We conduct experiments in an academic
buildings with rooms furnished for different use, as in
Fig. 7a. Concretely, we collected data in various scenarios
including two classrooms, two laboratory rooms and one
meeting room. The laboratory rooms are furnished with
cubicle desks, computers, wireless mesh nodes and other

Fig. 5. Examples of estimation deviation for different start AoAs. Fig. 6. Examples of estimation deviation for different rotation angles.
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plastic and metallic furniture. The classrooms are equipped
with a metal platform and more desks and chairs. The meet-
ing room is the smallest room with a big rectangular table
placed in the center and several chairs around.

Data Collection. Two types of data, CSI and gyroscope
readings, are collected in the experiments. For CSI, we use
two mini-desktops (physical size 170mm�170mm) with
three external antennas as AP and client. Both mini-desk-
tops are equipped with Intel 5300 NIC and run Ubuntu
14.04 OS (Fig. 7c), and are set up to inject in monitor
mode [17] on Channel 157 at 5.785GHz. The AP is set to
send signals via one antenna. The client’s antennas are
spaced at a half-wavelength distance (2.59cm) in a linear
form to simulate the antenna array in commodity wireless
devices. For gyroscope readings, we use a Google Nexus 7
pad to record inertial sensor data. To acquire a mobile
device with three or more antennas and enable it to support
CSI measurements, we assemble a receiver by attaching the
client antenna array and the pad on a plastic turntable, as
shown in Fig. 7b, which can simultaneously measure CSI
and sensor readings. The equipment is by default placed
1.3m high, which is the height where people can naturally
use their phones.

We collect data in group. For each group of measure-
ments, we place the array with AoA of 0�, and rotate the
turntable with an interval of 15�, until AoA of 180�. By
doing this, we measure the 13 groups of CSIs at 13 orienta-
tions during the rotation and record traces of gyroscope
readings. Gyroscope readings for each rotation are recorded
by the pad. CSI is collected from 100 packets for each place-
ment of the array. To extensively evaluate the performance
of D-MUSIC, we perform measurements with different
environment settings, i.e. diverse Tx-Rx distances including
2m, 3m and 4m, different Tx height from 0m to 2m (relative
to the client) and different spots with various multipath
conditions. For each setting, we conduct 3 groups of meas-
urements. The rotation angles derived from gyroscope read-
ings are marked as ground-truths of corresponding AoAs
since we start from an AoA of 0� for each measurement.

Implementation. To carry out AoA estimation using differ-
ential phase, we implement MUSIC algorithm. The dimen-
sion of physical linear array is 1. By combining
measurements during rotation, D-MUSIC forms a synthetic
2-D array. To obtain accurate estimation of correlation
matrix S, we leverage phase information of multiple subcar-
riers as “snapshots” for MUSIC algorithm. Thus, the equiva-
lent number of “snapshots” used for constructing the
correlation matrix S is the number of subcarriers, i.e., 30.
Since WiFi adopts collision avoidance scheme, the report of

CSI means that only source AP transmits in the space. So
the number of sourceD is set to 1.

4.2 Performance

We first report the overall performance of D-MUSIC and
then evaluate impacts of different factors.

4.2.1 Overall Performance

To quantitatively evaluate the overall performance of
D-MUSIC, we compare D-MUSIC with both Phaser and
standard MUSIC without phase calibration. Due to the
asymmetric physical geometry of the array, information
from the linear array becomes unreliable as AoA u reaches
margins (i.e. 0� and 180�) [5]. Thus, we use data recorded
with AoA ranging from 15� to 165� to fairly compare the
methods. In addition, we only consider cases with rotation
angle no less than 45�, where D-MUSIC is generally
expected to yield better results according to the impact anal-
ysis of scale of rotation angle in Section 4.2.3.

As illustrated in Fig. 8, D-MUSIC achieves average esti-
mation error of 13�. Phaser slightly outperforms D-MUSIC,
due to the prior knowledge of precise Tx-Rx direction. The
jitter of CDF curve of Phaser demonstrates the unbalanced
performance of Phaser. Specifically, the AoA estimation
tends to be more accurate when the signal arrives around
the Tx-Rx direction used for calibration. Oppositely, the
AoA estimation apparently degrades when the received sig-
nal deviates from the calibration direction. In contrast,
D-MUSIC performs stably across all tested AoAs, due to
accurate measurement of rotation angles. Without phase
calibration, standard MUSIC yields a large percentage of
estimation error. Concretely, more than 20 percent cases
have estimation error beyond 60�. It means standard MUSIC
fails to work with unknown phase offsets.

In the following, we evaluate the impacts of various fac-
tors on performance of D-MUSIC.

Fig. 7. Experiment settings.

Fig. 8. Overall performance comparisons.
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4.2.2 Impact of Tx-Rx Distance

The Tx-Rx distance acts as the most critical factor for D-
MUSIC, since it decides the work range of the method. We
test Tx-Rx distances including 2m, 3m and 4m. As shown in
Fig. 9, D-MUSIC consistently achieves accurate AoA estima-
tion with different Tx-Rx distances. However, the perfor-
mance of D-MUSIC slightly drops down as the distance
increases. It is because that large Tx-Rx distance may lead to
complex multipath condition for the link, e.g. increasing
number of multipath, decreasing of power of direct-path
signal relative to overall signal, etc.

4.2.3 Impact of Rotation Angle

As discussed in Section 3.2.1, the quantity of rotation angle
impacts estimation error by contributing a coefficient term
cot Du2 to scale up the error. To validate the discussion, we
test different rotation angles from 15� (resolution of rota-
tion) to 75� (maximum rotation angle available). To get rid
of impacts of other factors, we fix the second measured
AoA to 90�, and vary the rotation angle between each suc-
cessive two measurement only.

Fig. 10 shows the distribution of AoA estimation error for
different rotation angles. The AoA estimation error is signif-
icantly large when the rotation angle is small. For cases of
15� and 30�, the error of the worst case reaches beyond 60�,
meaning that D-MUSIC is no longer usable. As the rotation
angle increases, the estimation error quickly diminishes. For
cases that rotation angle exceeds 45�, the average estimation
error is less than 10�, which is sufficient for practical use.

It is worthwhile to note that small rotation angle is not
the only factor that degrades the the performance of D-
MUSIC. For AoAs spaced with small rotation angle, the cor-
responding CSI measurements are similar. Thus, the differ-
ence of cosine values derived from CSI measurements is

relatively small. As a result, CSI measurement noise may
contribute more to final result, and further degrades the
performance of the method.

4.2.4 Impact of Orientation

The other factor amplifying CSI measurement noise is the
array orientation. Due to the asymmetric physical geometry
of the array, the quality of CSI measurements significantly
degrades as array becomes parallel with incident signal.
Thus, the estimation accuracy degrades accordingly.We eval-
uate the performance of D-MUSIC for estimating different
AoAs in Fig. 11. Concretely, we fix the rotation angle to 45�,
and vary (the second) AoAs from 60� to 120�. As is shown,
when AoA deviates from 90�, estimation error statistically
increases. The result is consistent with standard MUSIC,
which demonstrates the potential deficiency of linear array.

Note that the bisector also changes with different AoAs.
However, since D-MUSIC requires successive two rotations
of the array, it is not easy to control two bisectors to simulta-
neously change towards or away from 90� while fixing the
rotation angle. Meanwhile, the impact of coefficient term
tan u� is not severe when two AoAs are not strictly symmet-
rical about u ¼ 90�. Thus, we omit the discussion on impacts
of different AoA bisectors.

4.2.5 Impact of Height

Theoretically, D-MUSIC extends the work range of linear
array to a new dimension. Namely, it enables linear array to
estimate both azimuth and elevation components of AoA.
To evaluate the performance of D-MUSIC in 3-D space, we
test relative height difference between AP and client from
0m to 2m. The AP and client are placed at a distance of 4m,
which is a common setting in indoor environment.

As shown in Fig. 12, the azimuth error statistically
increases as the AP lifts up. The degradation of estimation

Fig. 9. Impact of Tx-Rx distances.

Fig. 10. Impact of rotation angles.

Fig. 11. Impact of orientations.

Fig. 12. Impact of Tx-Rx height differences.
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accuracy with increasing height difference has the same rea-
son as that of decreasing rotation angle (Section 4.2.3).
Recall that the output of differential MUSIC in 3-D space is
ð cos g2 � cos g1Þ cos t, where g1 and g2 are azimuth compo-
nents and t is elevation component. As relative height dif-
ference (i.e. elevation t) increases, difference of CSI
measurements of AoAs tends to be smaller, which leads to
relatively large CSI measurement noise, and thus degrades
the estimation accuracy. When the relative height difference
is less than or equal to 1.5m, the average estimation error is
below 15�, which is acceptable for a 3-antenna array. How-
ever, when the relative height difference reaches 2m, the
performance ofD-MUSIC dramatically degrades, with aver-
age estimation error greater than 25�. The main reason that
D-MUSIC fails when relative height difference reaches 2m
is the environment constraint. Specifically, the floor height
of our laboratory building is 3m. To evaluate the height dif-
ference of 2m, we have to place the client array near the
ground while the transmit antenna near the ceiling. As a
result, the multipath condition is aggravated comparing to
other height difference cases and the performance of D-
MUSIC is thus degraded. However, since the relative height
difference is commonly no more than 1.5m, D-MUSIC is
applicable to most indoor scenarios.

Comparing with azimuth estimation, elevation estima-
tion is more sensitive to the quality of CSI measurements.
The estimation errors in the worst cases even reach 15�,
while the ground-truth are just within 30�. The considerable
errors are potentially caused by inaccurate CSI measure-
ments and small range of elevation components. Fortu-
nately, azimuth components plays a more important role
than elevation components in practice. It is sufficient to use
azimuth components only in most scenarios such as indoor
localization.

4.2.6 Impact of Multipath

We further test the robustness of D-MUSIC under various
multipath conditions. Concretely, we evaluate the perfor-
mance of D-MUSIC in three different types of rooms, class-
room, laboratory and meeting room. In each room, the AP
and client are placed at the same height of 1.3m and at a dis-
tance of 3m. In classroom, the devices are placed along the
passageway between desks, where the desks are lower than
the devices. In laboratory, the devices are placed along the
passageway between the wall and the cubicle desks, where
the wall, the desks and other electronic devices (e.g. mesh
nodes) surrounding the link are higher than the devices. In
meeting room, due to the space limitation, the AP and client

are placed separately against the opposites walls in the east-
west direction. The conference table is placed between the
devices, at the height of about 0.3m lower.

Fig. 13 shows the performance of D-MUSIC in different
environments. In the classroom where the least multipath
exists, D-MUSIC achieves the best performance with aver-
age estimation error of 3�. In the laboratory, due to reflection
signals from surroundings, the performance of D-MUSIC
degrades to average error of 7�. In the meeting room where
the wall and the table generates strong reflection signals,
D-MUSIC only achieves an average estimation error of 16�.
In general, the more complex multipath conditions, the
worse precision D-MUSIC yields. For further more complex
multipath conditions, D-MUSIC might fail to yield precise
estimations.

4.2.7 Impact of AoA Estimation Approaches

D-MUSICusesMUSIC algorithm to estimateAoA from signal
phase difference. SinceD-MUSIC forms a uniform linear array
with rotation, other high-resolution AoA approaches compli-
ant with ULA array may also be used to improve estimation
performance. Thus, we further implement ESPRIT [18] and
Matrix Pencil [19] algorithms for performance comparison.
Specifically, total least squares (TLS) versions of the algo-
rithms are implemented to reduce the impact ofmeasurement
errors. Similar to the MUSIC algorithm, we identify the range
of phase difference f̂21;2 (Equation (8)) as either ð0; 2p� or
½�2p; 0Þ, according to the sign of rotation angleDu.

Fig. 14 shows the performance of D-MUSIC with three
AoA estimation approaches, i.e., MUSIC, TLS-ESPRIT and
TLS-Matrix Pencil. Three AoA estimation approaches
achieve similar average estimation accuracy. Yet ESPRIT
and Matrix Pencil have shorter error tails and slightly better
performance. The superiority of ESPRIT and Matrix Pencil
may attribute to the total least squares technique that mini-
mizes residue errors of both matrix of steer vectors and sig-
nal measurements with minimum Frobenius norm [20].
Different from MUSIC algorithm, both ESPRIT and Matrix
Pencil algorithms require specific array substructures. Spe-
cifically, ESPRIT requires repeated rotation invariant struc-
ture, and Matrix Pencil requires uniform linear structure.
However, when multiple measurements are integrated, sub-
structures required by both algorithms cannot be fulfilled,
as indicated by the form of steer vector in Equation (18). As
ESPRIT and Matrix Pencil cannot benefit from multiple
measurements, we adopt MUSIC algorithm for AoA estima-
tion with phase difference.

Fig. 13. Impact of scenarios. Fig. 14. Impact of AoA estimation approaches.
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4.2.8 Impact of Measurement Counts

By integrating multiple measurements, D-MUSIC can syn-
thesize larger array and achieve higher performance. To
evaluate the impact of number of measurements, we fix the
start and end orientations of the array, and vary the number
of measurements used for AoA estimation. Specifically,
AoAs of the start and end orientations are set to 15� and
165� respectively. And all combinations of measurements
within this range are used for evaluation.

Fig. 15 shows the performance of D-MUSIC with differ-
ent number of measurements. When only 3 measurements
are used, the average AoA estimation error is 22�. And the
error dramatically decreases as the number of measure-
ments increases. The average error finally converges to 4�

when more than 10 measurements are used. As common
WiFi APs broadcast beacons at a mild rate of 10 packets per
second, and the rotation of the user lasts a few seconds, the
beacons overheard by the client during rotation is sufficient
for accurate AoA estimation, making client-side localization
practical.

4.2.9 Impact of Antenna Combinations

While a minimum number of antennas required for AoA esti-
mation is 2, we evaluate whether D-MUSIC benefits from
extra antenna capacity (i.e., the 3rd antenna) provided by com-
mon WiFi NICs. Specifically, denote 3 antennas of the linear
array asA;B;C respectively,we test all possible antenna com-
binations: all 3 antennas (fA;B;Cg), adjacent 2 antennas
(fA;Bg, fB;Cg) and non-adjacent 2 antennas fA;Cg. Since
the antenna spacing of combination fA;Cg is twice as large as
the maximum antenna spacing required by MUSIC algo-
rithm, we carefully select groups of snapshots to avoid possi-
ble estimation ambiguity. Specifically, as discussed in Section
3.1.2, the term ~f21;2 should be within an interval of no more
than 2p. Thus, with the combination fA;Cg, the difference of
cosines of AoAs cos u2 � cos u1 should be within ½�1; 0� or
½0; 1�, which can be easily achieved when the rotation angles
between adjacent snapshots are no larger than 60�. So we
select groups of snapshots that fulfils this constraint to avoid
estimation ambiguity. In practice, the constraint can also be
easily achieved, since the sampling rates of both gyroscope
andNIC are sufficiently high (e.g., 100Hz) andmeasurements
with adjacent rotation angles smaller than 60� can be picked
out for AoA estimation.

Fig. 16 shows the impact of antenna combinations on the
performance ofD-MUSIC. Among all combinations, the com-
bination of all 3 antennas (i.e., fA;B;Cg) has the lowest esti-
mation error. The combination of 2 non-adjacent antennas

(i.e., fA;Cg) has slightly higher estimation error. And combi-
nations of 2 adjacent antennas (i.e., fA;Bg, fB;Cg) have the
highest estimation error. The reasons are two fold. First, array
aperture size impacts AoA resolution [21].With fixed antenna
spacing, the aperture sizes of combinations fA;B;Cg and
fA;Cg are twice as larger as that of combinations fA;Bg and
fB;Cg. As a result, the former combinations have higher
AoA resolution and thus better performance. Second, number
of antennas impacts variance of AoA estimation error [22].
Thus, the combination fA;B;Cg has more antennas and
lower estimation error.

4.2.10 Impact of Bandwidth

While MUSIC algorithm is originally proposed as a narrow-
band AoA estimator, the 802.11n WiFi signal has a relative
wide bandwidth, which may violate the constraint of the
algorithm. Therefore, we evaluate the performance of
D-MUSIC with different bandwidth. While 802.11n sup-
ports up to 40MHz channel, we set the link to work in both
channel 157 and 161 simultaneously at HT40 mode, and col-
lect extra groups of data. To perform D-MUSIC with differ-
ent bandwidth, we select different number of consecutive
subcarriers. Specifically, we evaluate D-MUSIC with band-
width of 40MHz, 20MHz and 10MHz, which correspond to
30, 15, 8 subcarriers respectively.

As shown in Fig. 17, the performance of D-MUSIC
degrades from 5� to 11� in terms of median estimation error
as the bandwidth decreases from 40MHz to 10MHz. Thus,
we can draw two conclusions on the relation between per-
formance of D-MUSIC and bandwidth available in 802.11n
WiFi signal. First, although 802.11n WiFi signal has such a
relative wide bandwidth that experiences frequency selec-
tive channel, its small ratio between bandwidth and carrier
frequency still meets the narrowband constraint of MUSIC
algorithm. Second, using wider bandwidth can improve

Fig. 15. Impact of measurement counts. Fig. 16. Impact of antenna combinations.

Fig. 17. Impact of bandwidth.
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performance of D-MUSIC, as it mitigates the burst noises
experienced in some narrowband spectrum.

4.2.11 Impact of Carrier Grouping

Finally, we consider the impact of another implementation
issue, carrier grouping. 802.11n standard specifies that NIC
vendors can use grouping method to save the size of the
CSI Report field by reporting a single value for each group
of Ng adjacent subcarriers. For example, Intel 5300 NIC
adopts a grouping factor Ng ¼ 2 and only reports 30 out of
56 CSI values for one packet. Thus, we conduct experiments
to evaluate whether such implementation issue impacts the
performance of D-MUSIC. Specifically, we compare the per-
formance of D-MUSIC between Ng ¼ 2 and Ng ¼ 4. For the
case where Ng ¼ 4, we pick corresponding subcarriers out
of subcarriers for the case where Ng ¼ 2, as guided by the
802.11n standard.

Fig. 18 shows the performance of D-MUSIC with differ-
ent carrier grouping factors. As shown, carrier grouping
method has minor effect on the performance of D-MUSIC,
which demonstrates the versatility of D-MUSIC for NICs
with different carrier grouping parameters. An interesting
finding is that in Section 4.2.10, for the case of 20MHz band-
width, we select consecutive 15 subcarriers in the middle of
30 subcarriers for performing D-MUSIC. In contrast, for the
case where Ng ¼ 4, we select 15 subcarriers in an alternation
manner. However, only the former case leads to degrada-
tion of performance of D-MUSIC, which demonstrates that
selection of subcarriers impacts the algorithm significantly.

4.3 Performance in Phase Calibration

As stated in Section 3.3, D-MUSIC can be integrated with
Phaser to calibrate unknown phase offsets of array elements,
eliminating the needs of manually acquired prior knowl-
edge. By doing this, it is also possible to moderately avoid
the impacts of multipath by performing standard MUSIC on
arraywith enough number of antennas.We conduct a bench-
mark experiment to show the capability of phase calibration
ofD-MUSIC. Concretely, we place the AP and client at a dis-
tance of 2m and at the same height of 1.3m in the classroom.
And we employ the ground-truth angle and AoA estimated
by D-MUSIC as the relative Tx-Rx direction input of Phaser,
respectively. The ground-truth of phase offset is measured
by splitting a reference signal and routing it to multiple
receiving radio chains with a 5GHz splitter.

As in Fig. 19, by using ground-truth, Phaser achieves
average estimation error of 15�. While with AoA estimation
by D-MUSIC for calibration, Phaser achieves average

estimation error of 19�. The accuracies are comparable, dem-
onstrating the capability ofD-MUSIC for accurate phase cal-
ibration. Furthermore, standard MUSIC is able to be applied
on devices calibrated by D-MUSIC to derive accurate AoA
estimation even in severe multipath environments, in case
of sufficient antenna numbers.

5 LIMITATIONS AND DISCUSSION

In this paper, we demonstrate the feasibility ofD-MUSIC for
AoA estimation. However, D-MUSIC is envisioned only as
early step towards practical scheme for accurate AoA esti-
mation as well as indoor localization on COTS mobile devi-
ces. In this section, we discuss limitations of current version
of D-MUSIC and lists challenges that are required to solve
to further revise D-MUSIC.

Dependence on particular NIC. D-MUSIC relies on the
availability of CSI information from the wireless chipset. As
a result, D-MUSIC cannot be deployed on mobile devices at
present, due to lack of hardware support. It is not a difficult
problem since the CSI is already calculated and portrayed
by the PHY layer of the hardware for channel estimation,
calibration and beamforming purposes. Hence, we envision
that with a light-weight modification of drivers, D-MUSIC
can be deployed on other WiFi NICs as well.

Feasibility for uniform linear array.D-MUSIC estimates phase
difference instead of signal phase to eliminate unknown
phase offsets. To achieve it, D-MUSIC leverages the repeated
manifold of uniform linear array to generate formal array for
estimating phase difference. As a result, D-MUSIC cannot be
directly generalized to arbitrary types of arrays. However, in
reality, uniform linear array is not the only choice for wireless
mobile devices, especially when other factors such as device
size and shape are considered more by designers. Moreover,
the inherent ambiguity of uniform linear array limits its AoA
estimation range within p, which, as a result, can not cover
the entire physical space. Thus, themodel ofD-MUSIC should
be generalized to arbitrary array types.

Rotation on horizontal plane. D-MUSIC requires the user to
rotate the array completely in the horizontal plane, in order
to decouple the azimuth and the elevation in the phase dif-
ference. However, in reality, users holding the mobile
device in their hands cannot rotate the device perfectly in
the horizontal plane. As a result, the azimuth and the eleva-
tion of signal AoA are correlated with each other, and can-
not be estimated by simply applying MUSIC to phase
difference. Thus, the model of D-MUSIC should be revised
and efficiently evaluated to overcome imperfect rotation
performed by real users, which is leaved as future work.

Fig. 18. Impact of carrier grouping. Fig. 19. Comparison of phase calibration error.
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Indirect estimation in multipath-rich scenarios. In current
version of D-MUSIC, we overcome multipath effect by indi-
rectly using D-MUSIC as a step for phase calibration. How-
ever, the operation of calibration is annoying for practical
use. The ideal usage of D-MUSIC is to directly estimate
AoA in even in multipath-rich scenarios. To achieve it,
much more array elements than current three elements
available on Intel 5300 NIC are required. Obtaining suffi-
cient array elements, either by using more physical anten-
nas or by performing more virtual rotations, is one direction
of our future work.

Client-side AoA-based localization. D-MUSIC can facilitate
client-side AoA-based indoor localization. Comparing with
mainstream AP-side localization methods [5], [23], [24], the
client-side localization do not require any modification of
WiFi infrastructure, and is thus applicable to any WiFi envi-
ronments with merely location information of APs avail-
able. In addition, D-MUSIC helps remove unknown phase
offsets and enable direct AoA estimation using COTS wire-
less mobile devices. Practical localization with D-MUSIC
requires simultaneously AoA estimation of multiple APs,
which can be achieved with beacons of APs received during
rotations [11]. However, as AoAs are estimated in the local
frame of the mobile client, it is still unclear the least number
of APs required to uniquely pinpoint the client. We leave it
for further study.

6 RELATED WORK

Related works roughly fall into following categories.
Measuring AoA via Phased Array. AoA has been widely

applied as a signal feature in localization [25], [26], wireless
coverage confining [7] and location-based wireless security
[6]. A primary functionality of these applications is to mea-
sure AoA via phased antenna arrays [27]. Wong et al. [28]
explores standard phase array processing to obtain AoA,
yet fails to develop a practical localization scheme. Array-
Track [5] improves AoA with spatial smoothing and spec-
tra grouping to suppress multipath effect to achieve sub-
meter localization accuracy with a rectangular array of
16 antennas on dedicated software-defined radio platforms.
To enable accurate AoA measurements, it is important to
calibrate for unknown phase offset. Our work is motivated
by the increasing popularity of AoA-based applications and
strives to enable accurate AoA measurement as well as pro-
vide a light-weight phase calibration scheme on commodity
WiFi infrastructure.

The state-of-the-art work, SpotFi [23], leverages the dif-
ference of complex responses of sub-carriers available in
CSI to generate smoothed CSI matrix and simultaneously
estimate AoA and Time of Flight (ToF). As SpotFi manually
calibrates phased array as in ArrayTrack [5], D-MUSIC can
complement SpotFi as a light-weight one-time phase cali-
bration method.

Inertial Sensor Auxiliaries. The inertial sensors on modern
smart devices bring in an orthogonal dimension for AoA
estimation by providing various mobility information [29].
Ubicarse [11] calculates accurate displacement of SAR using
gyroscope and active drift compensation algorithm based
on mapping of AoA profile. CUPID [30] utilizes compass
and accelerometer to compute human moving distance, and

further identifies angle of the direct path using geometric
constraints. Our work also harnesses mobility information
to assist AoA estimation and is complementary to these
works. Unlike Ubicarse [11] where spatial phase difference
between antennas is calculated to generate “translation-
resilient” SAR, our scheme compute temporal phase differ-
ence of each single antenna to perform Differential MUSIC.
Also, Ubicarse needs high-resolution sensors to record a rel-
atively long trace during device motion. Conversely, our
scheme only requires gyroscope readings within one rota-
tion, which thus dramatically avoids the accumulative
errors of inertial sensors in the long-run. The rotation opera-
tion is also more natural and convenient than CUPID [30]
where users are required to walk for a few steps.

Phase Calibration. Phase calibration is crucial for wireless
communications and mobile computing applications.
Argos [31] performs phase calibration by sending from one
antenna on the WARP FPGA-based AP while receiving on
the others. Yet this approach is inapplicable on current half-
duplex COTS wireless devices, where they cannot transmit
and receive on different antennas simultaneously. Another
approach is to utilize an extra reference. Chen et al. [32]
exploit a short reference signal sent from an additional ref-
erence transmitter at a known location to eliminate phase
offsets of COTS wireless devices. Phaser [10] computes AoA
spectrum of signal sent from reference transmitter, and esti-
mates the unknown phase offsets which lead to maximum
likelihood AoA spectrum. One drawback of these calibra-
tion schemes is that they require the absolute position of ref-
erence transmitter a prior that is only possible to be
precisely acquired by manual measurement, and need re-
calibration for every new wireless network. Conversely, our
work utilizes inertial sensors on smart devices to eliminate
the need for reference transmitters, enabling phase calibra-
tion on COTS wireless devices.

7 CONCLUSION

In this paper, we propose D-MUSIC, a relative form of stan-
dard MUSIC algorithms that enables accurate AoA estima-
tion on commodity WiFi devices. We leverage users’
natural behaviour of rotation to formulate a virtual spatial-
temporal antenna array and a corresponding relative inci-
dent signal. The incident angle of the relative signal is
derived by standard AoA estimation algorithm, and mean-
while captured by inertial sensors as the rotation angle.
Thus D-MUSIC can obtain the AoAs within only one rota-
tion, yet without the impacts of the unknown phase offset
on each antenna.D-MUSIC is feasible in 3-D cases with vari-
ous transmitter and receiver heights, which is beyond the
achievements of previous works. Furthermore, we fortify
D-MUSIC for multipath-rich scenarios by employing its out-
puts as an auto phase calibration for standard MUSIC algo-
rithm. Extensive experimental results have validated the
feasibility of D-MUSIC, with an average error of 13� with
only 3 measurements and 5� with at most 10 measurements.
Requiring no hardware modifications or cumbersome cali-
bration, D-MUSIC is envisioned as an early step towards a
practical scheme for AoA estimation on COTS mobile devi-
ces. Future works include further enhancing D-MUSIC in
rich multipath conditions and applying D-MUSIC for accu-
rate indoor localization.
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