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Abstract—Accurate forecast of citywide crowd flows on flexible region partition benefits urban planning, traffic management, and

public safety. Previous research either fails to capture the complex spatiotemporal dependencies of crowd flows or is restricted on grid

region partition that loses semantic context. In this paper, we propose DeepFlowFlex, a graph-based model to jointly predict inflows

and outflows for each region of arbitrary shape and size in a city. Analysis on cellular datasets covering 2.4 million users in China

reveals dependencies and distinctive patterns of crowd flows in not only the conventional space and time domains, but also the speed

domain, due to the diverse transportation modes in the mobility data. DeepFlowFlex explicitly groups crowd flows with respect to speed

and time, and combines graph convolutional long short-term memory networks and graph convolutional neural networks to extract

complex spatiotemporal dependencies, especially long-term and long-distance inter-region dependencies. Evaluations on two big

cellular datasets and public GPS trace datasets show that DeepFlowFlex outperforms the state-of-the-art deep learning and big-data-

based methods on both grid and non-grid city map partition.

Index Terms—Urban areas, road transportation, deep learning, predictive models

Ç

1 INTRODUCTION

PREDICTING citywide crowd flows is of great importance
for urban planning, traffic management, and public

safety. Crowd flows can be specified by inflows and outflows,
which refer to the total amount of crowds entering or leaving
a region within a given time interval [1]. With a macroscopic
view of crowd flows in and out of every region, city authori-
ties can make strategies on traffic control and power supply
to reduce environment pollution and energy waste [2]. Fore-
casts of commuter volumes facilitate urban transit develop-
ers to schedule feeder bus routes and minibus services at
traffic hotspots [3]. Taxi-calling platforms benefit from
crowd flow prediction by pre-dispatching taxis to regions
with large numbers of potential passengers [4]. Emergency
mechanisms can also be enhanced if knowledge of over-
loaded regions is known in advance [5].

The deep penetration of mobile phones in everyday life
has made cellular data ideal to estimate citywide crowd
flows. While GPS dominates for outdoor localization and
tracking, GPS data may be unavailable (e.g., underground
metros). Pedestrians, who account for a considerable portion
of crowd flows, are often reluctant to turn on the GPS contin-
uously and share their locations due to privacy concerns. In
contrast, the anonymous cellular data collected and aggre-
gated at cell towers can be easily associated with user loca-
tions. Due to the pervasive usage of mobile phones, cellular
data cover a wide geographical range, a large population
and diverse transportation modes, thus characterizing
human mobility more comprehensively. Although cellular
data yield larger location error than GPS, they suffice to
derive fundamental laws in human mobility [6], [7] and
aggregatedmobilitymodels [8], [9], [10].

Macroscopic prediction of crowd flows is promising but
challenging. Large-scale studies have revealed the predict-
ability of human mobility [7] and extensive mathematical
models have been proposed in the past decade [8]. How-
ever, the estimations of mathematical models often yield
low accuracies and notably differ from the actual crowd
flows [11]. Some researchers predict user-specific move-
ments based on historical trajectories [12]. Yet it involves
substantial computation overhead to aggregate crowd flows
using predictions on individual mobility. General time-
series approaches [13] yield limited accuracy because they
fail to model the complex spatiotemporal dependencies of
crowd flows.

In addition to the challenges in modeling the spatiotem-
poral dependencies, the citywide crowd flow prediction
problem is further complicated by the cellular dataset and
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the need for flexible region partition. Take Fig. 1 as an exam-
ple. (i) Since a mobile phone regularly reports its location to
the associated cell tower [2], the location of a mobile phone
user is available regardless of his/her transportation mode
(e.g., walk, bike, vehicle, underground metro). The diverse
transportation modes lead to complex dependencies of
crowd flows among regions. For example, crowd flows of
one region (r1) may not only depend on those of adjacent
regions (e.g., r2), but also those of distant regions (e.g., r3 due
to fast, underground metros). (ii) Urban planning and traffic
management applications are usually performed on seman-
tic, geographical or administrative regions of a city. For
instance, it is reasonable to segment region r5 following the
directions of the river banks, which results in irregular region
shapes. It is also desired to cluster areas around a transporta-
tion hub (e.g., an airport in region r4) into a small region due
to its high volume of mobility. Pioneer research on crowd
flow prediction either works with only grids of the same
size [1] or fails to characterize the distant dependencies
among regions [5]. Furthermore, existing solutions [1], [5],
[14] are only tested on mobility datasets of a single transpor-
tation mode, leaving validation with heterogeneous trans-
portationmodes unexplored.

In this work, we propose DeepFlowFlex, a Deep graph
learning enabled citywide crowd Flow prediction scheme on
Flexible region partition. In addition to the conventional
space and time domain, DeepFlowFlex decomposes crowd
flows in the new speed domain to characterize the distinctive
patterns due to diverse transportation modes. DeepFlowFlex
utilizes graph-based deep neural networks to capture com-
plex spatial dependencies among regions and predict inflows
and outflows for every region in the whole city. Specifically,
DeepFlowFlex utilizes graph convolutional long short-term
memory networks to model spatiotemporal (especially long-
term) dependencies. It also employs residual learning to
model spatial dependencies, particularly long-distance
dependencies. The graph-based structures enable DeepFlow-
Flex to operate even on irregular-shaped regions. Evaluations
on large-scale cellular datasets covering 2.4 million users and
7.7 thousand cell towers in two major cities of China show
that DeepFlowFlex improves the prediction accuracy by
8.7 percent (RMSE), 12.9(MAPE) and 11.4 percent (RMSE),
9.3 percent (MAPE) than the state-of-the-art grid-based deep
model [1], and the spatiotemporal model for crowd flows [5],

respectively. Trained on mobility data alone, DeepFlowFlex
also outperforms the state-of-the-art data fusion schemes [1],
[5] on both grid and non-grid region partition.

The contributions of this work are summarized as
follows.

� To the best of our knowledge, DeepFlowFlex is the
first work that predicts citywide crowd flows with
cellular data via deep graph learning on flexible
region partition. It will benefit various urban comput-
ing applications that involve regions of irregular
shapes and diverse sizes.

� In addition to the conventional time and space
domains, we further decompose crowd flows in the
speed domain. The speed domain accounts for the
diverse transportation modes of crowd flows, which
is neglected in previous models designed for a single
transportation mode.

� Extensive evaluations on two large-scale cellular
datasets show that DeepFlowFlex outperforms the
state-of-the-arts on both grid and non-grid region
partition. DeepFlowFlex is also applicable to other
mobility datasets such as GPS traces and yields lower
prediction errors than data fusion based approaches.

In the rest of the paper, we review relatedwork in Section 2
and describe our dataset and the problem formulation in
Section 3. We present the detailed design in Section 4 and
evaluate the performance of DeepFlowFlex in Section 5.
Section 6 finally concludes this study.

2 RELATED WORK

The explosion of cellular networks offers an opportunity to
study human dynamics at an unprecedented scale and
granularity [2], [8], [15], [16], [17]. Particularly, there has
been active research on modeling and predicting human
mobility.

With nation-wide cellular logs, researchers derive the
regularity [6] and predicability [7] of human mobility. Based
on these fundamental laws of human mobility, extensive
mathematical models have been proposed at macro and
micro levels [8]. For instance, Simini et al. [10] propose a
macroscopic model for migration flows in and out or a city.
To derive finer-grained mobility, additional knowledge and
assumptions are needed [8]. Song et al. [18] build a self-con-
sistent model for individual human mobility based on
mobile phone traces. However, it requires individual-spe-
cific information such as the number of unique locations vis-
ited. Other individual mobility models are effective among
people sharing similar social contexts [9]. They involve
extensive computation to aggregate citywide crowd flows
using individual mobility models. While these analytical
models are able to simulate mobility patterns to an accept-
able accuracy, the generated trajectories still often deviate
from the reality [11].

The development of mobile big data and urban comput-
ing brings in a promising paradigm in human mobility pre-
diction [19]. Instead of deriving synthetic models, these
research efforts directly predict human mobility via data-
driven approaches. CityMomentum [12] predicts short-term
movements especially during rare events such as New

Fig. 1. An illustration of crowd flows on flexible region partition. Region
partition is denoted by red dotted lines, which can be of irregular shapes
and different sizes. As an example, the outflow of region r1 is 4 (see the
four black dotted arrows).

WANG ET AL.: IMPROVING URBAN CROWD FLOW PREDICTION ON FLEXIBLE REGION PARTITION 2805

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:34:22 UTC from IEEE Xplore.  Restrictions apply. 



Year’s Eve countdown by tracking personal historical GPS
logs. Other researchers focus on vehicular traffic flow pre-
diction on road networks for intelligent transportation man-
agement. Lv et al. [20] introduce a deep learning based
model to learn genetic traffic flow features. Calabrese et al.
[21] estimate the origin-destination flows in the Boston met-
ropolitan area. These schemes aggregate crowd flows by
road segments [20] or points of interest [21]. In contrast, we
include crowd flows from both vehicles and pedestrians,
and aim to predict flows for every region citywide.

Our work is most related to FCCF [5], DeepST [14] and ST-
ResNet [1]. FCCF partitions a city into regions according to
road networks and clusters regions based onhistorical human
mobility. It then predicts new-flows and end-flows for each
region using taxi trajectories and weather data. DeepST
designs a deep neural network framework to predict inflows
and outflows for each grid region in a city combining taxi GPS
logs and meta data (dayofweeek, weekday/weekend). ST-
ResNet employs the residual neural network tomodel tempo-
ral properties of crowd traffic and absorbmore external factor
(i.e., weather) compared with DeepST. Unlike the aforemen-
tionedworks [1], [5], [14] that leverage the sparse taxi trajecto-
ries to sample humanmobility, we harness cellular data from
mobile devices,which covers significantlywider range, popu-
lation, and activities. In contrast to FCCF [5], we carefully
design a deep spatiotemporal model to make full use of the
big cellular data and characterize the complex (especially
long-term and long-distance) inter-region dependencies of
crowd flows. Our graph-based model is applicable to both
grid and irregular city map partitions, whereas ST-ResNet [1]
is restricted to grids due to the CNNmodels.

3 DATASET AND PRELIMINARIES

This section presents an overview of our dataset and for-
mally defines the crowd flow prediction problem.

3.1 Cellular Dataset

A mobile phone regularly notifies its rough location in case
of events (e.g., call, Internet usage) or network updates (e.g.,
switching among 2G/3G/4G) [2]. A large-scale cellular
dataset provides information about the macroscopic mobil-
ity regardless of the location and the transportation mode of
mobile users.

3.1.1 Data Collection

Our work is grounded upon two citywide cellular usage
datasets collected by a major cellular carrier in CityA
and CityB of China. The datasets monitor every packet
exchanged between mobile-to-mobile, mobile-to-Internet
and Internet-to-mobile sources and destinations. Each
mobile record consists of a unique anonymous user ID, the
flow create time, the flow connected cell tower ID, App ID,
device type ID, uplink traffic and downlink traffic. Table 1
summarizes the basic statistics for the datasets. To the best of
our knowledge, the datasets are the largest urban-scale cellu-
lar traffic datasets in terms of the number of mobile users and
cell towers. The wide coverage in mobile users and cell tow-
ers promises to capture various transportation modes and
comprehensive spatiotemporal dynamics in crowd flows.

3.1.2 Data Preprocessing

The raw mobile records are preprocessed in three steps.
(i) User Filtering. In this work we mainly focus on crowd

flows that likely come from residents in the city. Therefore we
filter short-lived mobile records that fail to connect to the
Internet for at least three consecutive days. Note that devices
outside the citymay also be recorded in the dataset due to the
ISP’smobile roaming policy. This portion ofmobile records is
also removed by checking the coordinates of the cell towers.

(ii) Localization Estimation. Since our aim is to predict city-
wide crowd flows, we use the location of the cell tower as an
estimate for each mobile device (user). Specifically, the cell
tower ID field in each mobile record is mapped to the geo-
graphical coordinates of the corresponding cell tower. Note
that a mobile device may not be associated to the nearest cell
tower [2] and the flow-level records only observe the cell sector
where the user initiates his session [22]. However, a location
accuracy of 70 m is achievable with the coverage information
of cell towers [23].

(iii) Trajectory Denoising. To further reduce the location
errors, we harness trajectory information to avoid large single
location errors. Specifically, we first extract the trajectory T of
user u as Tu ¼ fp1 ! p2 ! � � � ! png where pi ¼ ðLu

i ; t
u
i ; d

u
i Þ,

Lu
i is the location of the connected cell tower, and

Lu
1 6¼ Lu

2 ; L
u
2 6¼ Lu

3 ; . . . ; L
u
n�1 6¼ Lu

n, t
u
i is the first create time of a

flow record meeting Li 6¼ Li�1, t1 < t2 < � � � < tn. dui ¼
tuiþ1 � tui is the travel time fromLu

i toL
u
iþ1. Thenwe apply rule-

based filters (speed filter, speed variation filter, angle filter and
loop filter) inspired by [24], [25] to denoise the trajectories. The
speed filter and speed variation filter estimate the immediate
speed and speed variation at pi and identify pi as an outlier if
its immediate speed or speed variation exceeds the threshold
speedmax ¼ 120 km=h or variationmax ¼ 120 km=h, respec-
tively. Angle filter is designed to remove outliers with sharp
angles. A point pi forms a sharp angle when ffpi�1pipiþ1

exceeds umax ¼ 120� and both ffpi�2pi�1pi and ffpipiþ1piþ2 are
smaller than umax. Since a mobile device may switch between
several nearby towers frequently even though the user stays in
the same place, we apply loop filter to find loops within a
given small area smax ¼ 2 km� 2 km and compress them to a
weighted centroid. Fig. 2 shows four instances applying the fil-
ters, respectively. Fig. 2a removes p5 since the immediate
speed of p4 ! p5 and p5 ! p6 exceeds speedmax. Fig. 2b detects
p4 as an outlier since its speed variation is abnormal. Fig. 2c
deletes p4 in the trajectory because p4 forms a sharp angle in
the trajectory. Fig. 2d views p4, p5, p6 as a loop.

3.2 Problem Statement

Similar to [1], we define two types of crowd flows, i.e.,
inflow and outflow for each region. Inflow is the total

TABLE 1
Cellular Dataset Description

Statistics CityA CityB

Mobile Records 3:1� 109 2:5� 109

Cell Towers 5:2� 103 2:5� 103

Covered Users 1:5� 106 9:4� 105

Covered Apps 7:0� 102 7:0� 102

Covered Area 3:5� 103 km2 2:4� 103 km2

Date 12/20/2016-02/04/2017
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movement of crowds entering a region from other places
during a given time interval, and outflow denotes the total
movement of crowds leaving a region for other places.

Definition 1 (Region Partition). Region partition for a city is
to geographically divide the city map into non-overlapping
regions. Let R ¼ friji ¼ 1; 2; . . . ; Nrg denote the set of parti-
tioned regions, where Nr is the count of regions. The spatial
relationship is represented by G ¼ ðR;EÞ where E is the set of
all pairs of ðri; rjÞ meeting ri shares one or more boundary
point with rj.

Definition 2 (Crowd Flow). Let T ¼ fTuju 2 Ug denote the
trajectories of all users U . PtðrÞ denotes the set of mobile devices
located at region r at time t

PtðrÞ ¼ fujTuðtÞ 2 rg; (1)

where TuðtÞ ¼ Lu
i when t 2 ½tui ; tuiþ1Þ is the location of u at

time t.
The inflow of the region r is defined as people coming from

other regions

xin
t ðrÞ ¼ PtðrÞ n Pt�1ðrÞ: (2)

The outflow of r is defined as people going to leave r and
reach to other regions

xout
t ðrÞ ¼ PtðrÞ n Ptþ1ðrÞ: (3)

We use xin
t ¼ fxin

t ðriÞji ¼ 1; . . . ; Nrg to represent the set of
inflow of all regions at time interval t, and xout

t ¼ fxout
t ðriÞji ¼

1; . . . ; Nrg to denote the set of outflow of all regions at time
interval t. We use xt ¼ fxin

t ; x
out
t g to represent total crowd flow

for clear expression.

Definition 3 (Citywide Crowd Flow Prediction). Given
fx1; . . . ; xt�1g, the citywide crowd flow prediction problem
aims to predict xt.

Compared with prior studies on crowd flow predic-
tion [1], [5] that optimize for GPS traces, our problem try to
predict crowd flows covering various transportation modes
(on foot, bikes, vehicles, underground metros, etc.), large
populations (2.4 million), and complex spatiotemporal
dependencies. As will be discussed in the next section, our
model simultaneously characterizes the deep spatiotemporal
dependencies and works with city partition of irregular
shaped regions, which is impossiblewith previousworks [1],
[5], [14].

4 CITYWIDE CROWD FLOW PREDICTION

This section presents the design of DeepFlowFlex.

4.1 Overview

Fig. 3 illustrates thework flowofDeepFlowFlex.We first seg-
ment a city map into grid-based regions or non-grid-based
regions based on its applications (Section 4.2). We character-
ize crowd flows in the time and space domains, as well as
a new speed domain. The speed domain explicitly accounts
for the heterogeneous transportation modes of mobility
recorded by cellular data. We extract temporal features
from crowd flows in each region and group them by speed
(Section 4.3). The feature tensors are input into a graph-based
deep spatiotemporal model to capture both temporal and
spatial dependencies (Section 4.4). We first utilize graph con-
volutional long short-term memory networks (GLSTM) to
encode the spatial time series into fix-sized tensors and
model the spatiotemporal dependencies, especially long-
term temporal dependencies. Then we employ a residual
learning method to further model the spatial dependencies,
particularly long-distance dependencies. The residual func-
tion is learned with graph convolutional neural networks
(GCNN). The graph-based structures enable DeepFlowFlex
to operate on regions of irregular shapes and different sizes.
We describe each of the functional modules in sequel.

4.2 Region Partition

Region partition methods can be categorized into two clas-
ses i.e., the grid-based partition and the non-grid-based par-
tition. The grid-based partition segments a city map into
M �N grids according to the longitude and the latitude.
Each cell denotes a unique region in the scheme. This
method is easy to implement but can be inconvenient for
crowd flow prediction. The reasons are two-fold.

(i) Many urban planning and traffic management deci-
sions are made based on semantic, geographical or

Fig. 2. Examples of trajectory denoising via (a) speed filter, (b) speed variation filter, (c) angle filter, and (d) loop filter.

Fig. 3. The framework of DeepFlowFlex.
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administrative regions of a city, which may be repre-
sented by an irregular shape rather than a rectangle.

(ii) Due to the uneven distribution of citizens, regions of
different sizes should be considered. For example, in
the rural area, a large region is preferable to charac-
terize the small volume of crowd flows; while in the
urban area, a small and dense region is desirable to
characterize the high dynamics and large volume of
crowd flows.

Previous works have explored efficient non grid-base
map partitioning methods such as road network-based [5],
voronoi-based [26] and administrative division based [27].
Note that for any irregular shapes, their spatial relationship
can be model as a graph which can be handled by our pro-
posed graph learning model. The key challenges for the
problem are to model the spatial dependencies and temporal
dependencies. We design a deep learning scheme to model
the complex spatio-temporal dependencies. The scheme can
both learn long-termdependencies and long-distance depen-
dencies to improve the prediction performance. Due that

different partition methods are incomparable, for conve-
nience, in the rest of this paper, we use administrative divi-
sion-based partition for crowd flow pattern analysis. We
evaluate our model on both grid-based and administrative
division-based partitions. Fig. 4 shows the two region parti-
tionmethods for CityA andCityB, each region is a subdistrict
or town of the city.

4.3 Crowd Flow Characterization and Grouping

In this section we investigate the characteristics of the crowd
flows defined on the administrative division-based partition.
We show distinctive crowd flow patterns in time, space and
speed domains, which we leverage to design effective inputs
for our graph-based deep spatiotemporal model.

4.3.1 Time Domain Characteristics

Fig. 5a shows the time dynamics of crowd flows of a sample
region in CityA in one day. The crowd flows before dawn
(06:00) are low and peak at around 08:00 and 18:00, which

Fig. 4. Region partitions of CityA and CityB. (a) and (d) are the city maps of CityA and CityB. A, B, and C on the maps are sample regions of transpor-
tation hub, school and business area, respectively. (b) and (e) are administrative division-based partitions. (c) and (f) are grid-based partitions.

Fig. 5. Crowd flow patterns of a sample region: (a) Inflow/outflow of one day, (b) inflow/outflow of one week, and (c) inflow/outflow of weekdays and
weekends.
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are usually the start and end for work hours. Fig. 5b shows
that crowd flows have strong periodicity for days. How-
ever, we do not investigate the periodicity in weeks for the
limited dataset. Fig. 5c shows the difference between crowd
flows of weekdays and weekends in the sample region, that
is crowd flows of weekdays have larger volumes and var-
iances than crowd flows of weekends.

We further utilize autocorrelation to explore the tempo-
ral properties of crowd flows. The sample Auto-correlation
Function (ACF) of the inflow of region r is defined as follow:

rinh ðrÞ ¼
PT�jhj

t¼1 ðxin
tþjhjðrÞ � xinðrÞÞðxin

t ðrÞ � ðxinðrÞÞÞPT
t¼1ðxin

t ðrÞ � xinðrÞÞ2
;

(4)

where h 2 ½�T; T � and T is the total time interval, xinðrÞ
averages xin

t ðrÞ for t ¼ 1; 2; . . . ; T . The ACF of the outflow
can be defined similarly.

Fig. 6a shows the ACF of the inflow of a sample region.
We observe that the autocorrelation peaks at time lags of
one or multiple of 48 (hours). This result indicates a rough
periodic pattern of the crowd flows. In addition, the peaks
nearer to zero are higher than those further away. Thus the
current crowd flows are strongly related to the most recent
historical ones. These insights motivate us to utilize period
and closeness to depict such temporal patterns. Specifically,

the closeness feature is a tensor of crowd flows in the recent
S time intervals

xc
t ¼ ½xt�S; xt�Sþ1 . . . ; xt�1� 2 RS�Nr�2: (5)

The period feature is a tensor of crowd flows of S time inter-
vals in the last day ranging from t� T � bS2c to t� T þ bS�1

2 c

xp
t ¼ ½xt�T�bS2c

; xt�T�bS2cþ1; . . . ; xt�TþbS�1
2 c� 2 RS�Nr�2;

(6)

where T is the period of the time series (e.g., for half-hour
time interval, T ¼ 48). The time range in the period feature
can be interpreted as the past and future sequences of t� T
can benefit to predicting at t.

4.3.2 Space Domain Characteristics

To explore the spatial characteristic of crowd flows, we
visualize the crowd flows of all regions of CityA at different
times in Fig. 7. We make the following observations. (i) The
crowd flows in transportation area (i.e., A) and some busi-
ness area exhibit heavy cellular traffic throughout the day.
(ii) Adjacent regions mostly have similar crowd flow scale
at all times in a day. (iii) In the morning, rural areas have
higher outflows than inflows while in the evening, rural
areas have higher inflows than outflows. It can be explained

Fig. 6. Characterizing crowd flows in the time, space and speed domains: (a) ACF of inflow in a region, (b) Morans’I of inflow and outflow, and
(c) speed distribution of citywide crowd flows.

Fig. 7. Spatial dynamics of crowd flows at different times of a day. (a)-(d) are inflows and (e)-(h) are outflows.
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that some people living in rural areas go to the central areas
for work and return home in the evenings.

To further study the spatial dependencies of crowd
flows, we examine the correlations among regions using the
Moran’s I [28]. Moran’s I is a measure of spatial autocorrela-
tion, which is defined as

IðtÞ ¼ nP
i;j wij

Pn
i¼1

Pn
j¼1 wijðxtðriÞ � xtÞðxtðrjÞ � xtÞPn

i¼1ðxtðriÞ � xtÞ2
;

(7)

where wij ¼ 1
di
when ri and rj are neighbors, di is the degree

of ri. For a normalized weight matrix (i.e.,
P

j wij ¼ 1),
values of I range from �1 to þ1. Values significantly
below �1

N�1 indicate negative spatial autocorrelation and
values significantly above �1

N�1 indicate positive spatial
autocorrelation.

Fig. 6b shows the values of Moran’s I for crowd flows at
the granularity of half an hour in December 20, 2016 of
CityA. As shown, all the Moran’s I values are greater than
0.3 throughout the day, indicating positive spatial autocor-
relation. The spatial dependencies of crowd flows among
regions suggest the necessity to apply convolutions in the
prediction model, which is validated in [1]. However, the
CNNs in [1] are restricted to grids, while we utilize GCNNs
to operate on flexible region partition.

4.3.3 Speed Domain Characteristics

Since the crowd flows estimated by cellular data cover not
only vehicles but also pedestrians, we explore whether
crowdflows of different speed groups exhibit distinctive pat-
terns. We estimate the speed of users as follows. For
u 2 xin

t ðrÞ, the speed of u is the immediate speed at t of Tu,

that is, s ¼ DðLi�1;LiÞ
di�1

, where ti�1 < t 	 ti < tþ Dt and for

u 2 xout
t ðrÞ, the speed of u is defined as s ¼ DðLi;Liþ1Þ

di
, where

ti < t 	 tiþ1 < tþ Dt. Dðx; yÞ is the distance function and
can be defined as Euclidean distance or Manhattan distance.
In our work, we use Euclidean distance to estimate the speed
of user. Although the definition of speed is coarse-grained
and tends to underestimate the actual speed, it suffices to
show the speed distribution of crowd flows.

Fig. 6c plots the speed distribution of crowd flows in three
different regions labeled in Fig. 4a. We aggregate different
speed ranges into 10 bins, including ½0; 2Þ; ½2; 4Þ; . . . ;
½18;þ1Þ. As shown in Fig. 6c, the speed distribution of the
three regions notably differ. The regionwith a transportation
hub contains a large portion of fast crowd flows (
 14 km/h)
while in the business area and school area slow crowd flows
dominate (< 14 km/h). This observation indicates that
many citizens take metros or ground vehicles from and to
the transportation hub,while pedestrians dominate in school
and business area. Compared to the school area, the business
area has a higher portion of speed in ½0; 2Þ bin. The reason
might lie in the fact that people prefer to walk in the business
area for shopping.

To explore the speed dynamic, we propose to group
crowd flows according to their speed range, which is
neglected in previous crowd flow prediction studies with
mobility data of single transportation mode [1], [5], [14].

4.3.4 Feature Summary

Based on the above characteristics of crowd flows, we pro-
pose to decompose the crowd flow of each region into fast
flows (
 14 km/h) and slow flows (< 14 km/h), and sum-
marize the crowd flows using closeness and period.

Note that despite that our speed feature only includes
two groups (i.e., fast and slow), it can be decomposed in a
more fine-grained way with more accurate location estima-
tion and much bigger data for training.

To predict xt, historical crowd flows are represented as
four feature tensors. We then reshape the feature tensors
into xFt 2 RS�Nr�8 by concatenating flow type (i.e., inflow
and outflow), speed type (i.e., fast speed and slow speed)
and temporal type (i.e., closeness and period). The feature

tensor xF
t is fed into our graph-based spatiotemporal model

to jointly learn the spatiotemporal dependencies, which are
described as below.

4.4 Graph-Based Deep Spatiotemporal Model

For crowd flows x ¼ fx1; . . . ; xNg on a region partition
G ¼ ðV;EÞ defined in Section 4.2, x can be taken as graph
signals whose response at time t is xt. The features of x are
grouped as {xF1 ; x

F
2 ; . . . ; x

F
N } as in Section 4.3. Our graph-

based deep spatiotemporal model DeepFlowFlex is a func-
tion f�, which is formulated as

x̂t ¼ f�ðG; xF
t Þ: (8)

Our DeepFlowFlex model consists of two modules (i.e., the
encoding module and the residual learning module).

4.4.1 Encoding Module

The encoding module identifies spatial structures and finds
temporal dynamic patterns simultaneously. We use
GLSTM [29] as our encoding module. GLSTM is a generali-
zation of convLSTM [30], which is an efficient method for
modeling spatiotemporal sequences. GLSTM is a combina-
tion of GCNN [31] and LSTM [32]. The former is an efficient
generalization of CNN and could learn local, stationary and
compositional features on graphs. The latter provides a
good way to learn long-term dependencies avoiding explo-
sion and vanishing of the gradient problem [33].

Like LSTM, GLSTM learns temporal correlations stably
by maintaining a memory cell ct which acts as an accumula-
tor of the state information. Every time a new graph signal
xt comes, its information will be accumulated to the cell if
the input gate i is activated. And the past cell status ct�1 will
be “forgotten” if the forget gate f is on. The output gate o
controls the output of the memory cell. All input-to-state
and state-to-state transitions in GLSTM are implemented
with a one-layer GCNN which applies graph convolution
operator �G on the input. The convolution operator �G for
the graph signal x on G is defined by applying a non-
parametric kernel guðLÞ ¼ diagðuÞ, where u 2 RjV j is a vector
of Fourier coefficients as

y ¼ gu �G x ¼ guðLÞx ¼ guðULUT Þxt ¼ UguðLÞUTx; (9)

where U 2 RjV j�jV j is the matrix of eigenvectors. L 2 RjV j�jV j

is the diagonal matrix of eigenvalues of the normalized
graph Laplacian L ¼ IjV j �D�1

2WD�1
2 ¼ ULUT 2 RjV j�jV j.
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IjV j is the identity matrix, W is the weight matrix defined as
wij ¼ 1 when ri and rj are neighbors otherwise 0 in this
work. D 2 RjV j�jV j is the diagonal degree matrix with
Dii ¼

P
j wij.

The key equations of GLSTM are shown in Eq. (10) where
� denotes the Hadamard product

i ¼ sðWxi �G xt þWhi �G ht�1 þ wci � ct�1 þ biÞ
f ¼ sðWxf �G xt þWhf �G ht�1 þ wcf � ct�1 þ bfÞ
ct ¼ ft � ct�1 þ it � tanhðWxc �G xt þWhc �G ht�1 þ bcÞ
o ¼ sðWxo �G xt þWho �G ht�1 þ wco � ct þ boÞ
ht ¼ o� tanhðctÞ:

(10)

In DeepFlowFlex, the feature tensor introduced in
Section 4.3 is fed into the multi-layer GLSTM to encode the
spatiotemporal dependencies and the encoding output is
further fed into a deep residual networks implemented by
GCNN to further model the long-distance spatial depen-
dencies, which is explained as follows.

4.4.2 Residual Learning Module

In this module, we implement deep residual networks with
GCNN to learn the far-away spatiotemporal dependencies
induced by themodern and convenient transportation. Resid-
ual learning is proposed to build a much deeper structure of
neural networks and has shown excellent performance on
many visual recognition tasks [34]. It utilizes “shortcut con-
nections” [35] to learn the residual mapping instead of learn-
ing the desired underlying mapping directly, making the
training process easier to optimize. Despite of its popularity,
the effectiveness has not been validated onGCNNs.

In our module, the residual unit or ResGCNN is imple-
mented by two stacked “GCNN + ReLU” as Fig. 8 illus-
trates. The input for the lth residual unit is denoted as xðlÞ

and the output of lth residual unit is xðlþ1Þ. For the lth resid-
ual unit, the residual function F for optimizing is defined as

xðlþ1Þ ¼ xðlÞ þ FðxðlÞÞ: (11)

Putting it together, the encoding output as Section 4.4.1
describes, is denoted as xð0Þ 2 RjV j�fL , where fL is the count
of hidden units in the GLSTM layers. xð0Þ will first be fed
into a “GCNN+ReLU” layer with filter number as fC and

the output is xð1Þ 2 RjV j�fC . The aim of the first layer is to
ensure the dimension of input and output of residual unit
equal. Then the output xð1Þ will be fed into L-stacked resid-
ual units with fC as the filter number. Finally, xðLþ1Þ is input
into another “GCNN+ReLU” with filter number as 2 to out-
put the final prediction for inflow and outflow.

5 EVALUATION

In this section, we present the evaluations of DeepFlowFlex
with both grid-based and non-grid-based partitions.

5.1 Experiment Setting

5.1.1 Datasets

� CityA Cellular Dataset (CityA). CityA is one metropo-
lis in northern China. The CityA cellular dataset con-
tains cellular data usage traces of 1.5 million users
monitored at 5.2 thousand cell towers from Dec 5th,
2016-Feb 4th, 2017.

� CityB Cellular Dataset (CityB). CityB is one big indus-
trial city in China. The CityB cellular dataset contains
cellular data usage traces of 0.9 million users moni-
tored at 2.5 thousand cell towers from Dec 5th, 2016-
Feb 4th, 2017.

Each data record is preprocessed as in Section 3.1. For
grid-based partition, CityA is partitioned into 10� 10
regions and CityB into 8� 8 regions. For non-grid-based
partition, we use the township-level administrative divi-
sions to partition CityA into 72 districts and CityB into 49
districts as Figs. 4b and 4e shows, the statistics of unregular
partition of cities are summarized in Table 2. The inflows
and outflows of each region are aggregated as in Defini-
tion 2. We normalize the crowd flows for all regions to [0, 1]
by applying Max-Min normalization on the dataset. As with
previous works on crowd flow prediction [1], [5], [14], we
predict crowd flows at a time resolution of half an hour. In
the evaluation, the prediction values are re-scaled to normal
values and compared with the ground truth. We take 80
percent of the data as Train Set and the rest 20 percent as
Test Set. Validation Set accounts for a proportion of 20 per-
cent of Train Set if needed.

To validate the applicability of DeepFlowFlex on other
data sources, we also evaluate the performance of Deep-
FlowFlex on two public GPS trace datasets used for grid-
based partition [1] and non-grid-based partition [5].

5.1.2 Metric

We use Root Mean Squared Error (RMSE) and Mean Abso-
lute Percentage Error (MAPE) to quantify the performance
of each method as below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jQj � jT j � jRj
X
u;t;r

ðxu
t ðrÞ � x̂u

t ðrÞÞ
2

s
(12)

MAPE ¼ 1

jQj � jT j � jRj
X
u;t;r

j x̂
u
t ðrÞ � xut ðrÞ

xu
t ðrÞ

j; (13)

where u 2 Q ¼ fInflow;Outflowg is the flow types, t 2 T ¼
f1; 2; . . . ; Ng is timestamp in test data, r 2 R ¼ fr1;

Fig. 8. Structure of a residual unit.

TABLE 2
The Statistics of Unregular Partition of Cities

Statistics CityA CityB

Regions Count 72 49
Max Area of Regions (km2) 49.1 81.0
Min Area of Regions (km2) 0.6 1.4
Average Area of Regions (km2) 6.3 16.0
Max Covered Cell Tower Count of Regions 270 153
Min Covered Cell Tower Count of Regions 3 6
Average Covered Cell Tower Count of Regions 53.0 53.3
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r2; . . . ; rNrg is a region, x and x̂ are the ground truth and
prediction value, respectively.

5.1.3 Baselines

We compare our method with the following baselines.

� HA. Historical Average (HA) predicts the crowd
flows at a certain time by averaging the volumes of
crowd flows at the same time of past days.

� ARIMA. The Auto-Regressive Integrated Moving
Average (ARIMA) model [13] is commonly used for
modeling time series behaviors and has been widely
adopted in time series prediction [36].

� LSTM. Long-Short Term Memory (LSTM) [32] is a
Recurrent Neural Network (RNN) architecture.
Unlike traditional RNNs, LSTM uses “gates” instead
of activation functions, making it suitable to learn
from experience to classify, process and predict time
series when there are very long time lags of unknown
sizes between important events.

� Prophet. Prophet [37] is an open-source tool released
by Facebook in 2017. It is based on an additive model
where non-linear trends are fit with yearly and
weekly seasonality, plus holidays.

� STARMA. Space Time Auto-Regressive Moving
Average (STARMA) [38] is a more advanced spatio-
temporalmodel, which can capture the spatial depen-
dency among regions and their kth-order neighbors.

� ST-ResNet. ST-ResNet [1] is the state-of-the-art deep-
learning based crowd flow prediction scheme. It
uses residual neural networks to model the spatio-
temporal pattern of crowd flows on grid partition.

� FCCF. FCCF [5] is the state-of-the-artmodel for crowd
flow prediction on non-grid partition. It applies Intrin-
sic GaussianMarkov Random Fields (IGMRF) to cap-
ture the temporal information in the crowd flows and
utilizes Bayesian network transit model to capture
inter-region dependence.

To demonstrate the effectiveness of each module in our
DeepFlowFlex model, we also compare the performance of
the following variants of DeepFlowFlex.

� GLSTM-FC. This variant feeds closeness features into
GLSTM and the output of GLSTM is input to Fully
Connected (FC) layers. It does not take period and
speed features into consideration.

� GLSTM-GCNN. This variant feeds closeness features
into GLSTM and the output of GLSTM is input to
GCNN layers.

� GLSTM-ResGCNN. This variant feeds closeness fea-
tures into GLSTM and the output of GLSTM is input
to ResGCNN layers.

� GLSTM-ResGCNN-PERIOD. This variant feeds close-
ness and period features into GLSTM and the output
of GLSTM is input to ResGCNN layers.

� DeepFlowFlex. DeepFlowFlex is our final model that
feeds closeness, period and speed features into
GLSTM,whose output is the input toResGCNN layers.

5.1.4 Implementation

We implement ARIMA using the “forecast” R package [39].
The package automatically selects the best model

parameters based on the given order constraints. We utilize
the “starma” R package [40] to implement STARMA model
and take a list of lagged neighbors lists as input. The first-
order neighbors of each region is defined as the regions
sharing one or more boundary point with it. We implement
Prophet with the “prophet” open-source library and con-
sider daily seasonality and weekly seasonality in the model.
We build a two-layer LSTM model with “linear” activation
functions. The parameters are set as hidden units = 1024,
time step = 4, dropout = 0.8. We apply Adam Optimizer [41]
to minimize the MSE criterion.

We directly use the open-source code1 for ST-ResNet [1]
and FCCF [5]. Since ST-ResNet only works on grid-based
partition and FCCF mainly focus on non-grid-based parti-
tion, we only evaluate ST-ResNet for grid-based partition
and FCCF for non-grid-based partition. For ST-ResNet, we
train the model with 3 � 3 filters with the filter number,
layer number, learning rate best tuned. FCCF is trained in
the same way as [14]. Since our dataset does not contain
weather information, we set weather to zero for any time.
Our DeepFlowFlex model and its variants are implemented
on TensorFlow [42] with time step S, the layer numbers of
GLSTM and ResGCNN, the hidden unit number of GLSTM
layer, and the filter number of ResGCNN as hyper-parame-
ters to be tuned.

All experiments use the same Train Set and Test Set set-
tings and are run on a Centos machine with Intel Xeon E5-
2620@2.10 GHz CPU and K40C 12 GB GPU.

5.2 Performance Comparison

5.2.1 Overall Accuracy

We evaluate different prediction methods on both CityA
and the CityB datasets. Fig. 9 shows the predicted inflows
and outflows by DeepFlowFlex and the ground truth at a
randomly chosen region of grid-based partition or non-
grid-based partition on both datasets. In can be observed
that the predictions match with the trend of the actual
crowd flows in all cases. The predictions are also close to
the actual values in transition points.

Table 3 summarizes the performance of different predic-
tion schemes on the two datasets with grid-based partition
and non-grid-based partition. All variants of DeepFlowFlex
significantly outperform HA, ARIMA, Prophet, LSTM,
STARMA. One variant, GLSTM-FC, is slightly worse than
the state-of-art methods (i.e., ST-ResNet on grid-based parti-
tion, FCCF on non-grid-based partition). However, other
variants of DeepFlowFlex perform significantly better than
the state-of-art methods. Among the baselines, HA and
ARIMA perform poorly as they rely purely on historical val-
ues for prediction. LSTM and Prophet are more advanced
time series models. STARMA considers spatial dependen-
cies. All of them achieve a better performance than HA and
ARIMA. ST-ResNet achieves the best performance among
baselines on grid-based partition. FCCF achieves best per-
formance among baselines on non-grid-based partition.

1. Note that ST-ResNet [1] and FCCF [5] rely on data fusion, e.g.,
weather and event data for optimal performance. Since such datasets
are accessible during the period of our cellular data collection, we
implement these two models without the parts for integrating weather
and event information.
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Among the variants of DeepFlowFlex, GLSTM-GCNN
achieves a lower RMSE (6.6, 8.5, 6.7, 4.2 percent) and MAPE
(9.4, 5.3, 2.5, 6.4 percent) than GLSTM-FC. This demon-
strates the effectiveness of learning the spatial dependency
with GCNN. There is a higher performance gain with
ResGCNN, indicating the necessity to leverage residual
learning to model long-distance spatial dependencies. By
accounting for the influence of period, we obtain an addi-
tional improvement of 2.7, 2.8, 2.4, 2.1 percent in RMSE and

2.4, 2.3, 1.6, 6.8 percent over GLSTM-ResGCNN. And our
final model DeepFlowFlex achieves the best result for
explicitly considering the speed domain, which is over-
looked in existing works [1], [5], [14].

Furthermore, DeepFlowFlex achieves a 13.6 percent
(RMSE) and 12.9 percent (MAPE), 8.7 percent (RMSE) and
15.1 percent (MAPE) improvement over ST-ResNet on
CityA and CityB with grid-based partition, respectively.
This performance improvement is because DeepFlowFlex

Fig. 9. Predicted and actual crowd flows over time of (a) grid-base partition in CityA, (b) non-grid-based partition in CityA, (c) grid-based partition in
CityB, and (d) non-grid-based partition in CityB.

TABLE 3
Performance of Baselines, DeepFlowFlex, and Its Variants

Method
CityA/Non-grid CityA/Grid CityB/Non-grid CityB/Grid

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

HA 29.02 23.03% 36.08 25.82% 42.89 23.6% 46.98 23.6%
ARIMA 28.02 32.08% 33.30 56.32% 40.09 22.20% 44.49 27.12%
Prophet 27.65 23.43% 33.14 22.20% 38.08 23.45% 43.01 25.11%
LSTM 27.29 23.85% 33.28 26.78% 38.53 24.37% 43.02 24.96%
STARMA 27.33 23.06% 32.72 25.62% 38.74 23.40% 43.45 23.31%
ST-ResNet - - 31.18 24.49% - - 38.76 24.25%
FCCF 25.35 22.74% - - 35.29 23.63% - -

GLSTM-FC 25.86 22.83% 32.09 25.08% 36.47 23.68% 39.81 24.67%
GLSTM-GCNN 24.15 20.69% 29.36 23.75% 34.01 23.09% 38.12 23.09%
GLSTM-ResGCNN 23.33 19.35% 28.79 23.15% 32.71 22.73% 37.46 22.80%
GLSTM-ResGCNN-PERIOD 22.68 18.88% 27.99 22.62% 31.93 22.40% 36.66 21.24%
DeepFlowFlex 22.06 18.03% 26.95 21.33% 31.11 21.44% 35.35 20.60%
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utilizes GLSTM to encode the temporal dependencies and
extract speed information. For non-grid-based partition,
DeepFlowFlex achieves 12.9 percent (RMSE) and 20.7 per-
cent (MAPE), 11.8 percent (RMSE) and 9.3 percent (MAPE)
improvement over FCCF on CityA and CityB, respectively.
Compared with FCCF, DeepFlowFlex utilizes GLSTM and
ResGCNN to better characterize the complex spatiotempo-
ral dependencies of crowd flows.

Since we mainly focus on crowd flows defined on non-
grid-based partitions in this work, we evaluate our works on
crowd flows with non-grid-based partitions in CityA and
CityB in next sections. For the convenience of evaluations,
we ignore HA and ARIMA for their poor performance. Since
ST-ResNet does not work on non-grid-based partitions, we
ignore ST-ResNet, too.

Mention that due to the uneven distribution of crowd
flows in different regions as shown in Fig. 10a, it is imper-
fect to evaluate the performance just from RMSE and
MAPE. As a result, most works [1], [5] don’t report MAPE
metric. For example, Fig. 10b shows the different perfor-
mance with crowd flow volume increasing for CityA/Non-
grid from MAPE perspective. We find that for huge crowd
flow (i.e., ½600; 800Þ) which is much more important for city
planning and traffic management, our method can achieve
8.10 percent MAPE, smaller than 18.03 percent of MAPE for
all test data. Therefore, although more than 20 percent
MAPE seems imperfect result, we believe our method will
benefit city planning and traffic management.

5.2.2 Performance at Different Times

In this section we investigate the prediction performance at
different time of DeepFlowFlex and the selected baselines for
crowd flows defined on non-grid-based partition in CityA
and CityB. Figs. 11a and 11b show the temporal trend of the
prediction errors of DeepFlowFlex and the baselines. During
the entire day, DeepFlowFlex mostly performs better than all
the baselines in both CityA and CityB. Particularly, Deep-
FlowFlex shows large improvement at 8:00 and 18:00, which
is 25.3 percent (RMSE), 23.2 percent (MAPE) at 8:00 and 21.3
percent (RMSE), 17.6 percent at 18:00 in CityA and 29.9 per-
cent (RMSE), 6.2 percent (MAPE) at 8:00 and 18.9 percent
(RMSE), 7.4 percent (MAPE) at 18:00 in CityB. This may be
because inmodern big cities,many citizens travel long distan-
ces to work (at 8:00) and return home (at 18:00). Hence spatial
dependencies, especially those between regions far-away are
crucial to accuratelymodel the patterns in crowd flows.

5.2.3 Performance in Different Regions

We evaluate the performance of DeepFlowFlex, the variant
GLSTM-ResGCNN-PERIOD and selected baselines in three
representative regions both in CityA and CityB, which are
labeled in Figs. 4a and 4d as A (transportation hub),
B (school), C (business). We compare GLSTM-ResGCNN-
PERIOD with DeepFlowFlex to understand the effectiveness
of speed domains. The results are shown in Figs. 12a and 12b
where GRP in the legends is the abbreviation of GLSTM-

Fig. 10. (a) Average prediction errors at different times in CityA and CityB. (b) MAPE of different crowd flow volume for CityA/Non-grid. (c) Deep-
FlowFlex’s performance for k-distance dependencies of CityA/Non-grid.

Fig. 11. Average prediction errors at different times in CityA and CityB.

Fig. 12. Prediction errors in regions of different functions in CityA and CityB.
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ResGCNN-PERIOD. We observe that both DeepFlowFlex
and the variant GLSTM-ResGCNN-PERIOD achieve lower
errors in the transport hub, school and business regions. We
notice one interesting difference between GLSTM-
ResGCNN-PERIOD andDeepFlowFlex. In the transportation
hub region in both CityA and CityB, DeepFlowFlex has a big-
ger improvement than GLSTM-ResGCNN-PERIOD of 10.0
percent (RMSE), 10.7 percent (MAPE) in CityA and 6.1 per-
cent (RMSE), 13.3 percent (MAPE) in CityB while in the
school or business regions, DeepFlowFlex has only a mar-
ginal improvement (i.e., 0.4 percent (RMSE), 1.2 percent
(MAPE) for the business region of CityA and 3.1 percent
(RMSE) and 2.6 percent (MAPE) for the business region of
CityB). The results indicate the effectiveness of speed domain
features and regions with a larger portion of high speed
crowd flows (e.g., transportation hubs) will benefit more in
DeepFlowFlex.

5.2.4 Impact of Hyper-Parameters

There are two important hyper-parameters in DeepFlow-
Flex, i.e., the time step S and the layer count of ResGCNN.

Fig. 13a shows the prediction error with respect to the
time step S. When the time step S ¼ 6, DeepFlowFlex yields
the lowest prediction error. When S increases from 1 to 6, the
prediction error decreases monotonously, which indicates
the importance of learning long-term temporal dependen-
cies. However, the prediction error starts to increase when S
is larger than 6. The potential reason is that the limited data-
set size causes over-fitting.

Fig. 13b shows the influence of the count of ResGCNN
layers on the prediction error. We also consider DeepFlow-
Flex implemented with GCNN to verify the effectiveness of
ResGCNN. In the experiment, the only difference between
ResGCNN and GCNN in DeepFlowFlex is whether the
model has short-cut connections. From the results, Deep-
FlowFlex achieves the best performance with two layer
ResGCNN and the prediction error keeps stable when stack-
ing more ResGCNN layer. However, a deeper structure
implemented with GCNN will induce significantly large
errors. Therefore it is necessary to exploit residual learning
in training deepGCNNmodels.

5.2.5 Applicability on GPS Datasets

We further evaluate a variant of our DeepFlowFlex model,
GLSTM-ResGCNN-Period on the GPS datasets used in the
state-of-art works [1], [5] since the datasets have no speed
information. The Beijing taxi GPS dataset (BJ-1) used by ST-
ResNet [1] covers 12 months of Beijing taxi GPS data and the
city map is segmented into 32� 32 grids. The Beijing taxi

GPS dataset (BJ-2) used by FCCF [5] covers the Beijing taxi
GPS data from March 1th, 2015 to June 28th, 2015 and the
citymap is partitioned into 26 high-level irregular regions.

We train our proposed GLSTM-ResGCNN-Period only
with GPS data and the graph extracted from region partition.
Table 4 summarizes the RMSE of prediction results and the
best reported result in ST-ResNet and FCCF. Our proposed
model achieves 12.6 percent (RMSE) improvement than ST-
ResNet on BJ-1 and 13.9 percent improvement than FCCF on
BJ-2. The results indicate that our proposed hybrid model
with GLSTM to capture long-term temporal dependencies
and ResGCNN to capture long-distance spatial dependen-
cies is able to better model the complex spatiotemporal
dependencies of crowd flows than the state-of-the-art mod-
els. Furthermore, our model is not only applicable in cellular
data, but is also effective on GPS data.

5.2.6 Impact of Long-Distance Dependencies

In this section we investigate the effectiveness of DeepFlow-
Flex to model long-distance dependencies, which is totally
necessary in modern cities where quantities of citizens travel
long distances to commute. In practice, DeepFlowFlex pre-
dicts the crowd flows of each regions with k-distance depen-
dencies, that is, we only utilize the information of regions
(i.e., other regions’ crowd flows are set to zero) which have
smaller distance than k km from the target region, the dis-
tance of two region is estimated as the distance of their cent-
roids. Fig. 10c shows the prediction error of DeepFlowFlex
with different k for CityA/Non-grid. We find that if only
considering the close-distance dependencies, it is hard to
predict highly precisely, for example, the case of 3-distance
dependencies is more than twice worse than 18-distance
dependencies. Our model models the spatial dependencies
among thewhole city achives the best performance.

6 CONCLUSION

In this work, we propose DeepFlowFlex, a graph-based deep
spatiotemporal model for citywide crowd flow prediction on
flexible region partition. DeepFlowFlex is devised to accu-
rately predict crowd flows covering a large population and
travelling in various transportation modes. Analysis with
large-scale urban cellular datasets demonstrates strong
dependencies of crowd flows in the space, time and speed
domains. DeepFlowFlex exploits graph-based models to
operate on irregular shaped regions. Specifically, DeepFlow-
Flex utilizes graph convolutional long short-term memory
networks to model spatiotemporal (especially long-term)
dependencies. It also employs residual learning tomodel spa-
tial dependencies, particularly long-distance dependencies.

Experimental results validate the effectiveness of Deep-
FlowFlex on both grid-based and non-grid-based region

Fig. 13. Impact of hyper-parameters.

TABLE 4
Performance on GPS Datasets

Methods BJ-1 BJ-2

ST-ResNet 16.69 -
FCCF - 14.17
GLSTM-ResGCNN-Period 14.58 12.20
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partition. We envision DeepFlowFlex will offer an accurate,
adaptive, and scalable macroscopic view of citywide mobil-
ity for various urban computing applications. In the future,
we plan to predict both regular and abnormal crowd flows
by incorporating heterogenous data sources.
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