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Abstract— Accurate, real-time object detection on resource-
constrained devices enables autonomous mobile vision appli-
cations such as traffic surveillance, situational awareness, and
safety inspection, where it is crucial to detect both small and
large objects in crowded scenes. Prior studies either perform
object detection locally on-board or offload the task to the
edge/cloud. Local object detection yields low accuracy on small
objects since it operates on low-resolution videos to fit in mobile
memory. Offloaded object detection incurs high latency due to
uploading high-resolution videos to the edge/cloud. Rather than
either pure local processing or offloading, we propose to detect
large objects locally while offloading small object detection to
the edge. The key challenge is to reduce the latency of small
object detection. Accordingly, we develop EdgeDuet, the first
edge-device collaborative framework for enhancing small object
detection with tile-level parallelism. It optimizes the offloaded
detection pipeline in tiles rather than the entire frame for high
accuracy and low latency. Evaluations on drone vision datasets
under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet
outperforms local object detection in small object detection
accuracy by 233.0%. It also improves the detection accuracy by
44.7% and latency by 34.2% over the state-of-the-art offloading
schemes.

Index Terms—Edge computing, object detection, real-time
systems, deep learning.

I. INTRODUCTION

RINGING advanced machine vision to mobile devices
such as drones and robots enables a wide spectrum
of autonomous mobile vision applications. Examples include
mobile phones for localization [1] and navigation [2], drones
for cost-effective traffic surveillance [3], and robot dogs to
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enforce social distancing during the COVID-19 pandemic [4].
Crucial in these applications is the capability to detect objects
from video inputs. An ideal object detection engine for
autonomous mobile vision applications should be accurate,
real-time, and resource-efficient. (i) Drones and robots should
accurately detect a large number of big and small objects in
the scene (e.g., vehicles and pedestrians in an aerial view
of a busy street). (ii) Fast object detection (i.e., 30-60 fps)
on continuous videos enables decision-making on the go.
For instance, a robot may identify the crowd density from
live videos and broadcast alerts when moving in a park.
(iii) resource-efficient: For portability and mobility, the
computation and memory resources in commercial drones are
still limited. Object detection algorithms need to be optimized
to fit in the resource budgets of mobile devices.

Existing object recognition solutions for resource-limited
devices fail to satisfy the accuracy and real-time requirements.
For example, in mobile AR/MR scenarios, their systems
require to run at 60fps and 2K resolution for the object
detection or object segmentation tasks [5]. For the huge
computing resources requirements, the commercial mobile
AR solutions such as ARKit [6] and ARCore [7] only
track the pose of the camera and fail to track the locations
of moving targets in real-time, which results in unnatural
virtual effects [8]. (i) One promising approach for fast
object detection is to run the model locally on-board. Model
compression techniques can dramatically reduce the workload
of deep learning models [9]. However, local object detection
with compressed models is sub-optimal for autonomous
mobile vision because accurate small object detection requires
high-resolution input [10], which easily overwhelms mobile
memory. (ii) An alternative is to offload object detection to
the edge, which utilizes the powerful edge to run large models
on high-resolution inputs for accurate detection. Nevertheless,
offloading incurs a long delay since it involves the wireless
transmission of high-resolution videos to the edge (i.e., a
2000kbps 2k video with 10Mbps wireless network bandwidth
means 200ms delay). Long end-to-end detection delay leads to
large detection errors as the mobile device’s view is constantly
changing [11].

Pioneer studies [5], [11] avoid transmitting every frame by
using cached detection results of previous frames to track
objects in the current frame and only offloading key frames
to update the cached results. This “detect-+track” strategy
supports real-time object detection in case of high bandwidth
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Fig. 1. An illustration of the popular “detect+track” framework for offloaded
object detection. The detection results of the current frame are obtained by
applying trackers on the cached detection results. The cached results are
routinely updated by offloading key frames.

networks. Its performance tends to deteriorate in the case
of low-bandwidth, e.g., outdoors, which autonomous mobile
vision applications often target at.

Instead of pure local processing or offloading, we propose
to split the object detection task between the mobile device
and the edge. Specifically, we offload small object detection
to the edge. The rationale is intuitive. Commercial mobile
devices are now able to accurately and rapidly detect large- to
medium-sized objects by running compressed models on low-
resolution videos [12], [13]. Hence only data relevant to small
objects need to be uploaded to the edge in high quality, thus
reducing the overall offloading delay and improving detection
accuracy. The “small” size is empirically tuned to achieve
optimal performance, and we will detail the classification
method later.

Realizing the above idea for accurate and real-time object
detection needs a systematic design on (i) what and how to
offload to the edge and (ii) how to aggregate the detection
results. We base our design upon “detect+track” (Fig. 1),
the prevailing framework, to accelerate offloaded object
detection [5], [11]. The detection results of the current frame
are obtained by adapting cached detection results of prior
frames using lightweight trackers [14]. The cached results
are routinely updated by offloading key frames for expensive
yet highly accurate object detection. In our case, the trackers
and the detectors for big objects are lightweight. Hence the
bottleneck for real-time detection is the offloaded small object
detection. Since the detection results of the current frame rely
on the cached results, the bottleneck for accurate detection,
especially for small objects, lies in the freshness of the cached
results.

We propose EdgeDuet, an accurate, real-time object
detection engine, which tiles and offloads small object
detection to the edge (Fig. 2). EdgeDuet tackles the
aforementioned accuracy and real-time bottlenecks via the
following techniques. (i) Optimizing offloaded small object
detection with region-of-interest (Rol) frame encoding and
content-prioritized tile offloading. EdgeDuet applies Rol frame
encoding to save network traffic. Only pixel blocks potentially
containing small objects are transmitted in high quality, while
the rest of the frame is compressed to low quality. EdgeDuet
adopts content-prioritized tile offloading to accelerate small
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object detection at the edge. It processes videos in the unit
of tiles rather than the entire frame, so as to improve the
parallelism of offloading. It also prioritizes the offloading of
tiles containing more objects, so that the cached detection
results of more objects are freshly updated. (ii) Real-
time tracking via cache management and adaptive tracker
configuration. EdgeDuet aggregates the detection results from
the local and remote object detectors to obtain fresh and
consistent cached results via a cache management mechanism.
It also applies adaptive tracker configuration to improve
the resource efficiency and real-time performance of the
trackers.

We implement EdgeDuet as a cross-platform framework
and evaluate its performance with mobile phones on
VisDrone [15], a public video dataset captured by drone-
mounted cameras. Evaluations show that pure local object
detection yields a detection accuracy in terms of only 0.096 for
small objects, while EdgeDuet achieves an accuracy of
0.319 for small objects.

The main contributions of this work are summarized below.

o EdgeDuet is the first framework that enhances small
object detection in crowded scenes via collaboration
between the edge and the mobile device.

o We push the state-of-the-art offloaded object detection
studies [5], [11] from task-level parallelism to tile-level
parallelism, which notably reduces the offloading latency.
EdgeDuet is a systematic design that enables accurate,
real-time object detection on mobile devices even in the
case of low network bandwidth.

o We implement EdgeDuet as a cross-platform framework.
Evaluations on VisDrone [15] show that EdgeDuet
improves the overall accuracy by 44.7% and the end-
to-end latency by 34.2% over the state-of-the-art object
detection offloading schemes [5], [11].

In the rest of this paper, we give an overview of EdgeDuet
in Sec. III and elaborate on its functional modules in Sec. IV,
Sec. V and Sec. VI. We present the implementation of
EdgeDuet in Sec. VII and the evaluations in Sec. VIIIL
We review related work in Sec. II and finally conclude in
Sec. X.

II. RELATED WORK

Our work is relevant to the following categories of research.

Object Detection Models. Advances in deep learning
have resulted in various accurate and fast object detection
models such as two-stage models e.g., Faster-RCNN [16]
and one-stage models e.g., YOLO [17]. Model compression
and acceleration techniques [9], [18], [19], [20], [21], [22]
can substantially reduce the computation workload of deep
learning-based models. However, the compressed models
suffer from low accuracy on small object detection if the
input image/video is low in resolution [10]. For accurate and
fast small object detection, customized models [10], [23],
[24] have been developed to detect objects on sub-regions of
the input image/video. However, these models are computed
heavily. Our work also performs object detection on sub-
regions. However, rather than design new object detection
models, we exploit existing YOLO-family models of different
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Fig. 2. An overview of EdgeDuet. Rectangles in different colors represent the three functional modules (offloaded small object detection (blue) (Sec. IV),
local object detector (yellow) (Sec. V) and real-time tracking (green) (Sec. VI). EdgeDuet is implemented as a cross-platform framework consisting of both

edge-side and device-side modules (Sec. VII)).

capabilities [17] to process different sub-regions of video
frames.

Edge/Cloud Offloading. A popular strategy to enable
highly accurate object detection on resource-constrained
mobile devices is to offload the compute-intensive object
detection to the powerful edge/cloud server [5], [11], [25],
[26], [27], [28], [29], [30], [31], [32], [33]. However,
offloading may incur long delays since large amounts of videos
need to be uploaded to the server via wireless networks.
To enable offloaded object detection on continuous videos,
Glimpse [11] proposes to only send trigger frames and
proposes the “detect + track” framework for fast object
detection. EAAR [5] compresses the uploaded frames via
Rol based video encoding and applies parallel streaming
and inference techniques to reduce the offloading latency
further. Our work is built upon the “detect + track”
framework and the pipelined offloading principle, but improves
the parallelism of the offloading pipeline to tile-level.
Furthermore, these studies do not optimize small object
detection. DDS [29] differentiates small and large object
detection by first offloading high-resolution, low-quality video
frames to detect large objects and locate small objects.
Regions containing small objects are then encoded in high
quality and offloaded again to detect small objects. The
method improves the accuracy of small object detection but
doubles the delay for object detection. Unlike DDS, which
detects large and small objects sequentially, we run a fast
model on low-resolution frames to detect large objects and
offload small object detection with high-quality frames at the
same time.

Tile-based Video Streaming. Tiling feature [34] in
video codecs has provided better quality gains for video
streaming [35], [36], [37], [38]. In tile-based video streaming,
the video is first cut into tiles and important tiles are
transmitted in high quality, whereas others are transmitted in
low quality or not transmitted at all. Since all of them are based
on existing video codecs, they encode the whole frame into the
bit-streams then process each tile’s bit-stream independently.
Differently, we redesign the video encoder such that it outputs
the bit-stream of each tile once it is encoded and transmits
the bit-stream to the edge server immediately to reduce the
offloading latency.

Single Object Tracking. There are many existing accurate
tracking algorithms [39], such as optical-flow based Lucas-
Kanade tracking [40], correlation-filter based KCF [14],
deep learning based Siamese RPN [41]. Most of these
techniques require lots of computational resources, and are
not efficient for applications on mobile devices with real-
time requirements. We choose KCF as our tracking algorithm
for its excellent efficiency and accuracy, and limited resource
requirements.

III. EDGEDUET OVERVIEW

As shown in Fig. 2, EdgeDuet consists of three functional
modules:

i) An offloaded small object detection module which
uploads high-resolution frames to the edge to detect small
objects. EdgeDuet optimizes offloaded small object detection
with region-of-interest (Rol) frame encoding and content-
prioritized tile offloading to save network traffic and accelerate
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small object detection at the edge. EdgeDuet processes videos
in the unit of tiles rather than the entire frame, so as to improve
the parallelism of offloading.

ii) A local object detector module which detects large
objects from low-resolution frames. The local object detector
aims to detect medium- to large- sized objects in the video
frames locally on the mobile device. We empirically decide
the model and input resolution for the local object detector to
meet the constraints of resources on the mobile device.

iii) A real-time tracking module which associates the
detection results (bounding boxes, a.k.a bboxes) from both
the edge and the mobile device and tracks each object with
single-object trackers. EdgeDuet adopts multiple single-object
trackers for object tracking and it also applies adaptive tracker
configuration to improve the resource efficiency and real-time
performance of the trackers.

We elaborate on the detailed designs of each functional
module in the subsequent sections.

IV. OFFLOADED SMALL OBJECT DETECTION

This module aims to (i) reduce the data for transmission
to the edge and (ii) accelerate the offloading pipeline for
timely updates of the cached detection results on the mobile
device. EdgeDuet exploits Rol frame encoding to compress
video frames, and content-prioritized tile offloading for highly
parallel object detection at the edge.

A. Rol Frame Encoding

As mentioned in Sec. I, accurate small object detection
relies on high-resolution, high-quality frames as input. Yet
uploading high-quality frames to the edge impairs real-time
object detection [23], [24], [26]. The Rol frame encoding
module reduces the amount of transmitted data by only
keeping the pixel blocks containing small objects in high
quality while compressing the rest of the frame to low
quality. Although Rol frame encoding has been used in other
offloading schemes [5], [29], the definition of Rol (i.e., blocks
containing small objects in our case) and the compression level
varies and should be tuned for specific applications.

1) Determining Blocks Containing Small Objects: A pixel
block is considered as containing small objects if (i) the local
object detector cannot classify the block into a class (or reports
low confidence scores); and (i) the remote object detector can
classify the block to a class (or reports high confidence scores).
Due to the high temporal correlation between successive
frames, we use the detection results of the previous frame
to identify blocks potentially containing small objects in the
current frame. For simplicity, we decide whether an object is
small using a fixed size. The size is empirically tuned such
that objects below this size cannot be accurately detected by
the local object detector but can be accurately detected by
the remote object detector. The object size is considered as
accurately detected if the recall is above 90%. Experiments
show that the optimal size threshold for small objects varies
across classes. For example, a size of 2000 pixels results in
almost 100% recall for pedestrians but less than 40% recall
for cars (see Fig. 3). Hence a different size threshold is set for
each targeting class.
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Fig. 3. An example of the class-dependent size threshold for small objects.

Details of datasets, local and remote object detectors see Sec. VII.

2) Determining Compression Levels: Blocks which are
determined as containing no small objects cannot be
compressed to arbitrarily low quality. This is because the
decision is made based on the detection results of the previous
frame. If a new object appears in the current frame, the
blocks containing this object may be so heavily compressed
that the object cannot be detected by the remote object
detector. To avoid missing detection of new objects, we tune a
low-quality compression level. Fig. 4 shows the rationality.
For low-quality images, the object detection model could
approximately detect most objects’ locations by lowering its
confidence score. We choose the compression level such that
the remote object detector outputs low confidence scores on
the compressed blocks but will not fail to locate objects. These
low confidence objects are also returned to the device for
offloading their blocks at the next frame, so as to be accurately
detected in the next frame. To avoid a cold start, we just offload
the whole frame in high quality.

3) Implementing Rol Frame Encoding: We use the High
Efficiency Video Coding (HEVC, a.k.a h.265) codec [42] to
encode pixel blocks containing small objects to high quality
and compress the rest of the frame to low quality. The
Quantization Parameter (QP) is one critical arguments in video
compression performance. Larger values mean that there will
be higher quantization, more compression, and lower quality.
Lower values mean the opposite. In our scheme, we generate
a delta QP map describing the delta QP values of each
macroblock in the raster order and encode the current frame
with the HEVC codec. Fig. 5a and Fig. 5b show an example
image before and after Rol frame encoding.

B. Content-Prioritized Tile Offloading

This module enables real-time small object detection via
fine-grained (tile-level) parallel offloading. It also facilitates
timely updates of cached detection results on the mobile device
by prioritizing the processing of tiles that contain more small
objects. Pipelined offloading proves effective for fast object
detection [5], where the offloading process is split into frame
encoding, frame upload, frame decoding, object detection, and
result downloading. Nevertheless, existing work [5] pipelines
the offloading process on a frame basis, which limits the
achievable parallelism. In contrast, EdgeDuet breaks a frame
into tiles and enables tile-level parallelism, thus allowing faster
pipelined and parallel offloading. We explain how to realize
tile-level parallelism and content-based priority below.
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Fig. 4. Detected objects for different image quality. (a) Low quality, low confidence objects. (b) Low quality, high confidence objects. (c) High quality, low

confidence objects. (d) High quality, high confidence objects.

Fig. 5. An example of key steps in EdgeDuet. (a) Input frame. (b) Frame after Rol frame encoding, where blocks containing no small objects are compressed
to low quality. (c) Tiles. (d) The output of video decoder after enabling tile-level parallelism. (e) Overlap-tiling. (f) Remote object detector results of tiles (red
rectangles). (g) Local object detector results of the low-resolution frame (yellow rectangles). (h) Cache management of remote and local object detectors.

Frame t Frame t+1

(a) Kvazaar parallelism

Frame t Frame t+1

N
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Fig. 6. Video encoding parallelism of Kvazaar and EdgeDuet.

1) Enabling Tile-Level Parallelism: A tile is a rectangular
region in a frame defined in HEVC [34]. Fig. 5c shows an
example of 5 x 3 tiles. To support tile-level parallelism,
we need to modify the frame encoding, frame decoding, and
object detection stage, as they are designed to operate on a
frame basis. The principle is to eliminate dependencies among
tiles for each stage, as described in detail below.

o Frame Encoding. Existing video encoders [43], [44], [45]
output the encoded bit-stream after processing all the
tiles in a frame. We redesign the video encoder such
that it outputs the bit-stream of each tile once it is
encoded. Our method is based on Kvazaar [45], which
treats the encoding of each tile as an individual task
and allows parallel tile encoding via a dynamic task
graph. However, Kvazaar outputs bit-streams on a frame
basis. Fig. 6(a) shows the task dependencies among tile
encoding tasks and frame bit-stream tasks of the current
frame and the next frame in Kvazaar. We modify its

(b) EdgeDuet parallelism

Fake bit-stream ——  Task dependency

bit-stream writing module so that the bit-stream tasks
operate on a tile basis, as the task dependencies shown
in Fig. 6(b). Specifically, we break the bit-stream of a
frame into a picture parameter set (PPS) and each tile’s
bit-streams. PPS contains the meta information of each
frame on entropy coding mode, slice groups, motion
prediction, quantization parameters (QP), and deblocking
filters. Consequently, each tile’s bit-stream only depends
on PPS and the tile encoding task. Hence the video
encoder will first output the PPS, and once one tile
is encoded, its bit-stream will be output and sent for
offloading. We also introduce a fake bit-stream task to
mark the end of the bit-stream tasks in a given frame.

Frame Decoding. Existing video decoders operate on
a frame basis. They assume the bit-streams of all the
tiles in a frame arrive sequentially and utilize the offset
from the first tile in the frame to locate the other tiles.
For example, in HEVC, only the location of the first
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tile is signaled in the slice header. All the other tiles
transmit their bit-stream offsets in the slice header, which
introduces dependencies on the first tile. We eliminate
such dependencies and enable tile-level parallelism in
frame decoding by forcing every tile in a frame as a “first
tile”. This is implemented by modifying the bit-stream of
each tile in the video encoder (Kvazaar) and the HEVC
parser in the video decoder (OpenHevc [46]) accordingly.
Fig. 5d shows an example of tile-level frame decoding.
Each tile is decoded to its position independent of the
other tiles (shown in black).

o Object Detection. Performing object detection on each tile
separately may miss objects which cross the boundaries
of adjacent tiles. We mitigate such dependencies among
tiles during object detection via overlap-tiling. That is,
we split the frame into M x N tiles, where M and N
are odd numbers. We use (7, j) to denote each tile, where
i €[1,M] and j € [1, N] are the row index and column
index, respectively. We classify tiles into two categories.
If both ¢ and j are odd numbers, the tile (z, j) is a primary
tile. Otherwise, the tile is an overlay tile. Fig. 5e shows
an example. Since tile 2 can be denoted as (1,3), tile
2 is a primary tile. We can conclude that tile 2 and 4 are
primary tiles and tile 1, 3, 5, 6, 7, 8 are overlap tiles.
We group each primary tile with its surrounding overlap
tiles for small object detection. In this example, tile 1,
2, 3,5, 6, 7 will be grouped. Detecting objects for each
tile group reduces the probability of missing objects that
exceed the boundary of a primary tile. We only group the
surrounding tiles because our remote detector targets at
small objects. Only large objects may be present in two
primary tiles crossing the overlap tiles, as person A and B
in Fig. 5f. The overlap size Soyeriap (Minimal width and
height of overlap tiles) is set to the least multiple large
coding unit (LCU), which is larger than the maximal size
of small objects defined in Sec. IV-A.1 and complies with
the tile definition in HEVC. The formula is illustrated as

max.{max{we, h.}}
LCU_WIDTH

1 x LCU_WIDTH
1)

where w. and h. are the width and height of the small
object threshold for the targeting class c. LCU_WIDTH
is the width of LCU. As object size can be arbitrary, the
approach of overlap-tiling may not always work well in
some extreme cases, we overcome it by simply running
object detection on the whole image after the last tile is
transmitted. Fig. 5f shows an example of detection results
using our method.

2) Enabling Content-Based Priority: Prioritizing tiles
containing more objects over those containing fewer objects
allows the cached detection results of more objects to stay
fresh. Since our implementation of tile-level parallelism
(Sec. IV-B.1) ensures tiles are offloaded early to return
detection results early, we only need to prioritize tiles at the
frame encoding stage.

o Implementing Tile Priority for Frame Encoding. We mod-

ify the task schedule module in Kvazaar by adding a

Soverlap = |—
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Task Priority Queue
Fig. 7. An illustration of content-based tile priority.

dynamic priority mapping module to enable the ordering
of tiles (see Fig. 7). Specifically, the dynamic priority
mapping layer associates a priority value p to each
primary tile according to the input content, where
p € [0,N) and N is the number of primary tiles,
and each overlap tile calculates its priority p as the
maximum priority of its surrounding primary tiles. Then
the encoding task of each tile is assigned a priority value
of p while its bit-stream task is assigned a priority value
of p+ N. This is to force the bit-stream task to execute
once the tile is encoded, which can be before other tiles’
encoding tasks.

o Assigning Tile Priority based on Content. To determine
the priorities (i.e., p) of the [N primary tiles, we count the
number of small objects of the corresponding tile group.
The priority value p of each primary tile is the index in
ascending order.

V. LocAL OBJECT DETECTOR

The local object detector aims to detect medium- to large-
sized objects in the video frames locally on the mobile device.
Since mobile devices have limited resources compared with
the edge, the local object detector should be lightweight and
operate on low-resolution frames. We empirically decide the
model and input resolution for the local object detector. The
local object detector should balance between offline accuracy
and latency to achieve high online accuracy. The offline
accuracy refers to the accuracy of the object detector, while the
online accuracy refers to the accuracy in the “detect+track™
framework [5], [11]. Accuracy is measured by metrics such as
IoU, as will be defined in Sec. VIII-A.5.

Table I shows the performance of different combinations
of object detectors and input resolutions evaluated on the
VisDrone dataset with an iPhone 11. For resource efficiency,
the models are quantized to £1oatl16. Since the “real-time”
detector is not a must with the “detect+track” framework,
we choose YOLOV3 (640 x 640) as the local object detector
based on the analysis. Fig. 5g shows an example of detection
results of the local object detector. Note that we only aim
to show the feasibility of running an object detector locally
for accurate and real-time medium- to large-sized objects.
An exhaustic search on the optimal local object detector is
out of the scope of this paper.

VI. REAL-TIME TRACKING

This module aggregates the offloaded and the local detection
results into the cache and adjusts the cached results via object
trackers to output the bounding boxes for the current frame.
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TABLE I
PERFORMANCE OF LOCAL DETECTOR ON IPHONE 11

Model IoU (offline)  Latency IoU (online)
YOLOv3-tiny (320x320) 0.015 12.4ms 0.012
YOLOV3-tiny (640x640) 0.078 19.5ms 0.052
YOLOv3-tiny (960x960) 0.140 38.9ms 0.090
YOLOV3 (320x320) 0.176 23.8ms 0.092
YOLOV3 (640x640) 0.361 62.5ms 0.193
YOLOV3 (960x960) 0.522 178.7ms 0.161
Video Init Task

Streaming Update Task
Tracker 1

Tracker 2

imeline
ﬂ -
Recv boundi gboxes Quey eal-time results

Fig. 8. General workflow using multiple single-object trackers.
EdgeDuet adopts multiple single-object trackers for object
tracking, as in [5] and [11]. Fig. 8 shows the general workflow.
Trackers return latest updated bounding boxes so as to query
as the same fps as the video input. Since we target at video
streams with high frame rates (30/60/120 fps) and the cached
results come from two object detectors, the general workflow
needs to be optimized for EdgeDuet, as we describe below.

1) Cache Management: We cache the detection results

received from the local or remote object detector and discard
the old results upon receiving new ones. One issue in our
cache management is that the local and the remote detector
may introduce duplicated detection results of the same object.
We drop the results of the local detector for small objects
and those of the remote detector for medium- to large-sized
objects in case of duplicated results. Fig. 5Sh shows an example
of merging local detection results and remote detection results.

2) Adaptive Tracker Configuration: To optimize the track-

ing performance on mobile devices, we consider the following.

o Choice of Single-object Tracker. We empirically choose
KCF [14] as our single-object tracker since it is both
faster and more accurate than the optical flow based
tracker in [11] and has higher accuracy than the motion
vector based tracker in [5].

o Priority-based Tracker Scheduling. To execute multiple
single-object trackers on resource-constrained devices,
we adaptively update the tracking results based on
the speed of the objects, because it is unnecessary to
frequently update the tracking results of objects that
are static or moving slowly. Specifically, we estimate
the object’s speed by the object’s move distance in
continuously tracked frames. Then we set a different
weight for each speed range, and the priority of each
tracker is updated to the product of its weight value and
the default priority (distance between the current frame
and last tracked frame in sequential task scheduling).
We schedule the tracker with high priority to track
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Fig. 9. Internal architecture of apple A13 SoCs.

first to ensure high-speed objects frequently updated.
To accelerate the tracking module, we use a thread pool
to execute multiple trackers parallelly.

VII. IMPLEMENTATION

This section presents the implementation of EdgeDuet on
the device-side and the edge-side.

A. Implementation of Core Device-Side Modules

We implement the device-side of EdgeDuet on a popular
mobile device, iPhone 11, which equips the A13 Bionic chip.
As shown in Fig. 9, this SoC contains 4 processors: two
high-performance Lightning CPU cores running at 2.65 GHz,
four energy-efficient Thunder cores running at 1.80 GHz,
four GPU cores with 0.69 TFLOPS for FP32 floating point
computing and eight Neural Engine cores with 5.5 TOPS for
Al computing [47]. Benefiting from the excellent performance,
the Soc makes it efficient for the tasks of video compression,
object detection and real-time object tracking.

The device-side modules of EdgeDuet consist of a video
streamer, a video encoder, a local object detector and an object
tracker. Each module has a unique thread and communicates
with other modules by blocking queues. The video streamer
simulates the video camera streaming process and feeds raw
frames to the video encoder, the local object detector and the
object tracker with different frame rates. The video encoder
encodes raw frames to bit-stream and sends network packets
to the server. The local object detector runs a light-weight
object detection model and updates the frame cache for object
tracking. The object tracker tracks all objects detected from
both the local object detector and the remote object detector.
Most modules on the device side are implemented in C+-+
17 [48] for easy deployment on different platforms such as
i0OS Frameworks [49], Android NDK [50] and Nvidia Jetson
[51]. We next explain more detail for each module.

1) Video Streamer: This module is used for simulating the
video camera streaming process using standard video datasets.
The streamer loads a video file and feeds video frames into
EdgeDuet at 30/60/120 fps. The module is implemented in
C++ using the VideoCapture module in OpenCV [52] to
read RGB images from a video file and convert the image to
1420 format for video encoding.

2) Video Encoder: This module is implemented in C+4-+
based on Kvazaar [53], an open-source HEVC encoder.
We modify the library to support tile-based parallel encoding
and priority, as described in Sec. IV-B.1 and Sec. IV-B.2.
The modified library is open-sourced at https.//github.com/xu-
wangl 1/kvazaar. We empirically encode and offload frames at
a fixed frame rate (e.g., 5 fps).
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3) Local Object Detector: This module is implemented in
Objective-C [54] with Core ML [55], which optimizes on-
device performance by jointly leveraging the CPU, GPU, and
Neural Engine. We use the pre-trained compressed YOLOvV3
model YOLOvV3FP16 (640 x 640). for medium- to large-sized
object detection, as explained in Sec. V. We empirically run
the local object detector at a fixed frame rate (e.g., 10).

4) Object Tracker: This module is implemented in C+-+
with the KCF [14] Tracker and ThreadPool [56] to schedule
multiple object tracking. We use the implementation of
KCFcpp [57] without the HOG features [58] for fast object
tracking, as described in Sec. VI-.2.

B. Implementation of Core Edge-Side Modules

We implement the edge-side modules of EdgeDuet on a
CentOS 7.0 server. It is equipped with two 8-core Intel Xeon
CPU ES5-2560 v4 CPUs, two GTX 2080ti GPUs and 256GB
memory. The edge-side modules of EdgeDuet consist of a
video decoder and a remote object detector. The video decoder
receives packets from the device-side and converts them to
image tiles. The image tiles will be queued in the remote object
detector for object detection.

1) Video Decoder: The video decoder is implemented in
C++ based on the OpenHEVC library [46]. We modify
the library to support tile-based parallel decoding as in
Sec. IV-B.1. We use OpenCV-Python bindings [59] for Python
to run the decoder and access the decoding results from
memory.

2) Remote Object Detector: The detector for small objects
on the edge is implemented as a pre-trained full-precision
YOLOV3-spp [60] model in PyTorch [61]. We run the model
in multiple processes for parallel inference on tiles. The GPU
is set to CUDA Multi-Process Service mode [62] to reduce
GPU context switching.

C. Implementation of Auxiliary Modules

For the edge- and device-side modules to work in synergy,
we also implement the necessary functions for network
communication, inter-thread communication, and data logging.

1) Network Communication: The communication between
the edge and the mobile device is via TCP [63]. We use the
sockpp [64] library for network programming. The up-link
traffic is transmitted as bit-streams, and the down-link traffic
(bboxes from the edge) is transmitted in the format of JSON.
The device will parse it with the JSON [65] library.

2) Inter-Thread Communication: In our implementation,
each module works as an independent thread. We use the
concurrentqueue [66] library to block the thread when
no task is put into the queue.

3) Data Logging: We use spdlog [67] to log the
timestamps of each processing step for tracing the entire
workflow.

Similarly, we use ‘“queue” for message communication,
“socket” for network communication, “logging” for logging
the work flow. All of them are in the python standard library.

VIII. EVALUATION

This section presents the evaluations of EdgeDuet.
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A. Experiment Setup

1) Datasets: To evaluate the performance for small object
detection, we compare different methods on VisDrone,
a dataset of videos captured by drone-mounted cameras,
which contains lots of small objects. We filter out the low-
resolution videos and only keep six 2K videos (2560 x 1440)
captured along a street. The count of frames is 1886.
We upsample the origin 30fps videos to 60/120 fps with
Super-SloMo [14] to evaluate the performance with the video
frame rate.

Table II gives the basic statistics of the dataset. Fig. 10
shows certain vital statistics of the VisDrone dataset. From
Fig. 10(a), the average number of objects in each frame is
132. As we will show later, adaptive tracker configuration is
beneficial to track such many objects in real-time. We analyze
the threshold of small objects by running the local object
detector and remote object detector on the dataset. We use the
detection results of the remote object detector as the ground
truth and the areas of bounding boxes as the sizes of objects
to calculate the recall-size curves of each class. Fig. 3 shows
the results of the car class and pedestrian class. We set the
threshold of the small car as 5150 pixels and the threshold
of the small person as 1698 pixels. From Fig. 10(b) and
Fig. 10(c), 75.1% of cars and 71.8% of pedestrians are small
objects. We will show the performance gain of offloading small
object detection over local detection shortly.

2) Compared Methods: We compare our EdgeDuet with the
following object detection schemes.

e Glimpse [11]: a continuous, real-time object detec-
tion system that first proposes the “detect + track”
framework on mobile devices. It offloads frames to the
cloud and uses optical flow based tracker for real-time
tracking.

e EAAR [5]: a state-of-the-art real-time object detection
system with offloading. It exploits parallel streaming and
inference as well as motion vector based object tracking.

e LaT: a variant of EdgeDuet (Local object detector +
adaptive Tracking configuration) that only performs local
object detection and tracks with our adaptive tracker
configuration.

To demonstrate the effectiveness of Rol frame encoding
module and Content-prioritized tile offloading module in our
EdgeDuet, we also compare the performance of the following
variants of EdgeDuet.

e EdgeT The variant only utilizes tile-level parallelism for

small object detection.

e EdgeTR The variant is EdgeT enhanced with Rol frame
encoding.

3) Implementation and Settings of Compared Methods:
The implementation of EdgeDuet and LaT can be found
in Sec. VII. We briefly explain the implementation of
Glimpse, EAAR, and parameter settings for all methods
below.

e Frames Encoding. To ignore the difference of JPEG
encoders and video encoders, we use Kvazaar to get
compressed JPEGs for Glimpse and video frames for
EAAR and EdgeDuet. This setting ensures the same frame
quality for a fair comparison. For G1impse, we encode
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Fig. 10. Characteristics of VisDrone dataset. There are numbers of objects in each frame, and most objects are small in size.
TABLE II
DATASET STATISTICS
scenario  #videos #avg duration #frames #categories #avg objects of each frame  resolution  year
drone 6 10.5s 1886 2 132 3840x2160 2018
each frame to I frame by setting Group of pictures TABLE III
(GOP) as 1. For EAAR and EdgeDuet, the GOP is set to PARAMETERS OF THREE NETWORK CONDITIONS
10. We use the ultrafast preset for real-time video
encoding. We tune high-quality QP as 22 and low-quality Parameter LTE ~ WiFi24GHz  WiFi 5GHz
QP as 44 for Rol encoding in EAAR and EdgeDuet. In Bandwidth (Kbps) 50000 40000 250000
EAAR uses Kvazaar to encode one frame to 1 x 4 tiles Out Bandwidth (Kbps) 10000 33000 100000
o . . In Delay (ms) 50 1 1
and pack each tile into one slice, as the default setting. Out Delay (ms) 65 1 1

EdgeDuet splits the frame into 5 x 3 tiles for offloading,
as in Fig. Sc.

e Remote Object Detector. We use the same remote
object detection model, i.e., YOLOV3-spp, for Glimpse,
EAAR, and EdgeDuet. Glimpse operates on the input
size of 2560 x 2560. EAAR operates on 1280 x 1280 but
returns the detection results in 2560 x 2560. Specifically,
we first cache the object detection results of each
2560 x 2560 frame in the memory and implement the
Dependency Aware Inference by detecting on only one
tile and overlooking other tiles for convenience. Since
we return the detection results of the whole frame,
our setting has the same accuracy but allows a lower
latency of EAAR compared with its origin dependency
aware inference. EdgeDuet operates on 960 x 960 for
overlap-tiling inference. The overlap size is set to 128
(2 macroblocks) as in Sec. IV-B.1.

e Real-time Object Tracking. We implement the optical
flow based tracker with calcOpticalFlowPyrLK for
Glimpse. For EAAR, the motion vector based tracker is
implemented as an offline process. When received from
the server, each track frame is associated with a refer
frame ID. We use ffmpeg to compress the refer and
track frames and extract the motion vector based on the
refer frame to simulate RPS Control in EAAR. LaT uses
the same tracking module of EdgeDuet. They both split
the speed range into two groups and set the weight as
2.0 for the fast speed range and 1.0 for the slow speed
range, as explained in Sec. VI-.2. The fast speed range
is set as [30 pixels/s, +00), and the slow speed range is
set as [0, 30 pixels/s). We query the tracking results of

the previous frame when the current frame is fed for all
methods.

4) Network Setting: Since autonomous mobile vision appli-
cations are often deployed outdoors, the network connections
vary. Accordingly, we compare the methods in different
network settings. We connect the mobile device and the edge
with WiFi 5GHz and emulate different types of networks with
Network Link Conditioner, a developer tool provided
by Apple. We use it to simulate different network conditions
(LTE, WiFi 2.4GHz, WiFi 5GHz), and network bandwidths,
Table III summarizes the parameters of the three network
conditions. Network conditions with high network propagation
delay is overlooked since our system requires offloading high-
resolution frame.

5) Metrics: We evaluate the performance of different
methods with the following metrics.

o Latency: The evaluation metric measures the delay
of the detected objects. Lower latency will benefit the
accuracy of object tracking. Since our detection results
are composed of medium- to large-sized objects in frames
from the local object detector and small objects in tiles
from the remote object detector. We average latency for
all objects, which is compatible with the definition of
latency in EAAR. Specifically, supposing that there are M
frames F,,, uploaded to the edge server, the M-th frame
is captured at time t(F},,) and contains NNV, objects. The
bounding box and class label of each object O}, are sent

m
to the client at time ¢(O},). Therefore, the latency can be
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Fig. 11. End-to-end object detection accuracy (bars in red) and latency (bars in blue) of different methods under three network connections.
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Fig. 13.  Output sample of EdgeDuet.

obtained by:

1 M N
Latency = ZMiN Z Z tOr)—t(Fy) (2)

m=1*""M m=1n=1

o Accuracy: We use the average IoU [68] to measure the
real-time object detection accuracy as in Glimpse and
EAAR. The IoU of object o is defined as the Intersection

over Union overlap with its ground-truth box.

_ |BBox(0) N BBox(g)|
~ |BBox(0) UBBox(g)|

IoU, 3)
where | - | is the area of the geometry, BBox(-) is the
bounding box of the geometry. g is the ground truth of
the object 0. We take the object accurately detected if
IoU >= 0.8. The IoU is averaged over all objects in all
frames.

B. End-to-End Performance

Fig. 11 summarizes the accuracy and latency of different
methods under LTE, WiFi 2.4GHz, WiFi 5GHz network
conditions. Fig. 12 highlights the accuracy of small objects.
We present our observations and explain the results below.
Fig. 13 shows the sample of detection results.

1) Overall Comparison: EdgeDuet notably outperforms
the two offloading schemes, Glimpse and EAAR, in both
accuracy and latency under all three network conditions.
LaT is the fastest because it only performs local detection.
However, pure local detection has the worst accuracy,
especially for small object detection. EdgeDuet achieves
160.2%, 242.9%, 287.8% improvement in IoU metric for
small object detection accuracy under the three network
conditions, respectively. Under slow network connection, e.g.,
LTE, LaT achieves similar accuracy with Glimpse and
EAAR. This indicates the necessity of a local object detector
when network conditions vary, which is common outdoors.
Since LaT performs badly for small objects, we exclude it
for the subsequent evaluations.

Among the variants of EdgeDuet, EdgeRT achieves a higher
IoU (1.47%, 2.80%, 1.43%) and lower latency(5.42%, 2.16%,
8.28%) than EdgeT. This demonstrates the effectiveness of Rol
Frame Encoding. EdgeDuet achieves a higher IoU (4.06%,
5.20%, 8.90%) and lower latency (1.47%, 18.79%, 11.41%)
than EdgeTR. This shows the effectiveness of Content-
prioritized tile offloading.

2) Comparison With Offloading Schemes on Latency:
EdgeDuet achieves 48.8%, 39.6%, 38.6% latency improve-
ment than Glimpse and 35.4%, 35.2%, 32.2% latency
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Fig. 14. Impact of network bandwidth.

improvement than EAAR under the three network conditions.
The improvement in latency is more notable under slower
networks, e.g., LTE. EAAR achieves shorter latency than
Glimpse since it transmits encoded videos instead of raw
JPEGs. EdgeDuet is faster than EAAR for the following
reasons.

o Detection of medium- to large-sized objects of EdgeDuet
is from a local object detector. The latency of the local
object detector is lower than offloading.

e Only small object detection is offloaded in EdgeDuet.
Therefore fewer data need to be transmitted.

o EdgeDuet accelerates the offloading pipeline with tile-
level parallelism. EAAR only implements task-level
parallelism, so that the detection results have to wait for
processing the entire frame.

3) Comparison With Offloading Schemes on Accuracy:
EdgeDuet achieves 52.8%, 45.5%, 47.6% loU improvement
gain over Glimpse, 50.2%, 43.6%, 41.3% IoU improvement
over EAAR under the three network conditions. EAAR achieves
slightly better accuracy than Glimpse under LTE and WiFi
2.4GHz. The reason might be that motion vector based tracker
behaves badly when latency increases. EdgeDuet yields the
highest accuracy because it trades off between the tracker’s
accuracy and efficiency and employs adaptive tracking to
update fast-moving objects.

4) Comparison With Offloading Schemes on Small Object
Detection: EdgeDuet achieves 34.9%, 34.9%, 44.5% loU
improvement for small objects over Glimpse, 72.3%, 68.0%,
61.7% IoU improvement for small objects over EAAR. EAAR
is worse than Glimpse for small object detection, although
it has a higher overall detection accuracy. This is because
small objects contain very few macroblocks to extract motion
vectors, making it inaccurate to represent the object.

Among the variants of EdgeDuet, EdgeRT achieves a
little higher IoU (0.9%, 0.7%, 3.4%) than EdgeT. EdgeDuet
achieves higher IoU (11.4%, 13.5%, 14.5%) than EdgeTR.
This demonstrates Content-prioritized offloading module
contributes a lot for small object detection.

C. Impacting Factors on Overall Performance

1) Impact of Bandwidth: Fig. 14 shows the accuracy of
different methods under different bandwidths. Thanks to the
local object detector and optimized offloading, EdgeDuet
consistently achieves better accuracy than Glimpse and
EAAR. Particularly, when the bandwidth is limited (below
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10Mbps), the accuracy of Glimpse and EAAR drops
dramatically.

2) Impact of Frame Rate: Fig. 16 shows the accuracy of
different methods when feeding videos of different frame
rates. EdgeDuet consistently achieves higher accuracy than
Glimpse and EAAR, even at 120fps. With the increase of
frame rate, the accuracy of Glimpse drops. This is because
the real-time tracker of G1impse only works in an fps lower
than 30fps. As for EAAR, increasing the frame rate motion
does not impact the motion vector based tracker and thus the
accuracy. An interesting finding is the accuracy of EdgeDuet
increases with the frame rate. The reason may be that we
use adaptive tracker configuration to update trackers of high
speed objects frequently to reduce the influence of the skipped
frames. Our tile-level parallelism may also help since once
each tile’s results are received, they do not wait for the new
frame fed with high fps video input.

D. Benefits of Individual Modules in EdgeDuet

1) Benefits of Rol Frame Encoding: We evaluate the
benefits of Rol frame encoding by comparing the offloading
file size with EAAR and Glimpse. We average the bits count
of frames with the same index in GOP. Since Glimpse only
contains I frame, we only average the corresponding frames
with the same frame index. Fig. 15 shows the average frame
size of GOP. Since Glimpse does not apply inter-frame
prediction and Rol frame encoding, its frame size is the largest,
especially when the frame is encoded to P frame in EAAR and
EdgeDuet. Since EdgeDuet does not offload medium- to large-
sized objects, its frame size is smaller than EAAR.

2) Benefits of Content-Prioritized Tile Offloading: We show
the benefits of content-prioritized tile offloading by comparing
EdgeDuet with two variants. The variant Frame-Level
encodes frames without splitting into tiles. The variant
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Tile-Level splits frames into tiles, but does not change
their priority. Fig. 17 shows the accuracy and latency of
EdgeDuet and the two variants. EdgeDuet achieves 8.1%
and 5.0% accuracy improvement over Frame-Level and
Tile-Level. EdgeDuet achieves 12.1% and 5.1% latency
improvement over Frame-Level and Tile-Level.

3) Benefits of Adaptive Tracker Configuration: We evaluate
the benefits of adaptive tracker configuration by comparing
EdgeDuet with a variant SegqTracking which sequentially
updates each tracker. Fig. 18 shows the accuracy of EdgeDuet
and SeqgTracking. Our adaptive tracker configuration
improves the overall accuracy by 4.7%.

IX. LIMITATIONS AND DISCUSSION

o Commercial HEVC Codec Support. EdgeDuet utilizes
Kvazaar as the video codec. Since Kvazaar is a CPU-
based video encoder, it requires lots of computing
resources for high-resolution video compression, which
burdens a lot for most mobile devices. Hardware
acceleration will help it for efficient video compression,
however, the commercial codecs have not supported the
tile feature yet. We hope some Al-driven solutions like
EdgeDuet will give more attention to the feature.

o Adaptive Local Object Detector. The performance of
EdgeDuet is influenced by the local object detector.
An efficient and accurate local object detector will reduce
the size of the uploaded video frame and improve
the accuracy of the trackers. However, the local object
detector will compete for the computing resources with
the trackers, which is not analyzed in EdgeDuet. We don’t
search the optimal local object detector choice according
to the computing resources and the video input.

X. CONCLUSION

This paper presents EdgeDuet, the first splits object
detection between the mobile device and the edge for accurate,
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real-time object detection on resource-constrained devices.
Specifically, EdgeDuet offloads small object detection to the
edge while detecting medium- to large-sized objects locally on
the mobile device. EdgeDuet exploits Rol frame encoding and
priority-based tile offloading to reduce the network traffic and
accelerate the offloading pipeline. It also optimizes the cache
detection results and tracker configurations for real-time object
tracking. Evaluations on VisDrone, a video dataset from drone-
mounted cameras, show that EdgeDuet outperforms local
object detection in small object detection accuracy by 233.0%.
It also improves the overall accuracy by 44.7% and end-to-end
latency by 34.2% over the state-of-the-art offloading schemes,
especially in low bandwidth and high frame-rate input.
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