2878

Xiaoxi He, Student Member, IEEE, Xu Wang

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

On-Device Deep Multi-Task Inference via
Multi-Task Zipping

, Student Member, IEEE, Zimu Zhou
Jiahang Wu, Student Member, IEEE, Zheng Yang ™, Senior Member, IEEE, and
Lothar Thiele™, Member, IEEE

Abstract—Future mobile devices are anticipated to perceive, understand and react to the world on their own by running multiple
correlated deep neural networks locally on-device. Yet the complexity of these deep models needs to be trimmed down both within-
model and cross-model to fit in mobile storage and memory. Previous studies squeeze the redundancy within a single model. In this
work, we aim to reduce the redundancy across multiple models. We propose Multi-Task Zipping (MTZ), a framework to automatically
merge correlated, pre-trained deep neural networks for cross-model compression. Central in MTZ is a layer-wise neuron sharing and
incoming weight updating scheme that induces a minimal change in the error function. MTZ inherits information from each model and
demands light retraining to re-boost the accuracy of individual tasks. MTZ supports typical network layers (fully-connected,
convolutional and residual) and applies to inference tasks with different input domains. Evaluations show that MTZ can fully merge the
hidden layers of two VGG-16 networks with a 3.18% increase in the test error averaged on ImageNet for object classification and
CelebA for facial attribute classification, or share 39.61% parameters between the two networks with < 0.5% increase in the test errors.
The number of iterations to retrain the combined network is at least 17.8x lower than that of training a single VGG-16 network.
Moreover, MTZ can effectively merge nine residual networks for diverse inference tasks and models for different input domains. And

, Member, IEEE,

with the model merged by MTZ, the latency to switch between these tasks on memory-constrained devices is reduced by 8.71 x.

Index Terms—Deep neural networks, model compression, multi-task learning

1 INTRODUCTION

I-POWERED mobile applications increasingly demand

multiple deep neural networks for correlated tasks to be
performed continuously and concurrently on resource-con-
strained mobile devices such as wearables, smartphones,
and drones [1], [2], [3], [4], [5], [6]. Examples include wear-
able cameras that recognise objects and identify people for
the visually impaired and drones that detect vehicles and
identify road signs for traffic surveillance. While many pre-
trained models for different inference tasks are available [7],
[8], [9], it is often infeasible to deploy them directly on
mobile devices due to their large memory footprints. For
instance, VGG-16 models for object classification [9] and
facial attribute classification [10] both contain over 130M

e Xiaoxi Heand Lothar Thiele are with the Computer Engineering and Net-
works Laboratory, ETH Zurich, 8052 Zurich, Switzerland. E-mail: {hex,
thiele/@ethz.ch.

o Xu Wang, Jiahang Wu, and Zheng Yang are with the TNList and School
of Software, Tsinghua Univeristy, Beijing 100084, China.

E-mail: xu-wang15@mails.tsinghua.edu.cn, jiahangok@gmail.com, yang
zheng@tsinghua.edu.cn.

o Zimu Zhou is with the School of Computing and Information Systems,
Singapore Management University, Singapore 178902, Singapore.

E-mail: zimuzhou@smu.edu.sg.

Manuscript received 3 Sept. 2020; revised 20 Sept. 2021, accepted 20 Oct. 2021.
Date of publication 2 Nov. 2021; date of current version 4 Apr. 2023.

The work of Xiaoxi He and Lothar Thiele’s was supported by the Swiss National
Science Foundation in the context of NCCR Automation. Zimu Zhou's research
was supported by the Singapore Ministry of Education (MOE) Academic
Research Fund (AcRF) Tier 1 Grant.

(Corresponding author: Zimu Zhou.)

Digital Object Identifier no. 10.1109/TMC.2021.3124306

parameters. Packing multiple such models easily strains
mobile storage and memory at inference time.

Model compression [11] is an effective approach to radically
reduce the size of a deep neural network without sacrificing its
accuracy by pruning unimportant operations (pruning) [12],
[13], [14], [15] or reducing the precision of operations (quanti-
zation) [16], [17]. However, all these proposals focus on single-
model compression. Consequently, they generate sub-optimally
compressed neural networks for multiple correlated inference
tasks because there can still be notable redundancy across
models due to task relatedness. For example, deep neural net-
works trained for different visual tasks tend to learn similar
low-level features that resemble either Gabor filters or colour
blobs [18]. Sharing information among tasks holds potential to
further reduce the sizes of multiple correlated models without
incurring drop in individual task inference accuracy.

We study information sharing in the context of cross-model
compression, which seeks effective and efficient information shar-
ing mechanisms among pre-trained models for multiple tasks
to reduce the size of the combined model without accuracy
loss in each task (see Fig. 1). A solution to cross-model com-
pression is multi-task learning (MTL), a paradigm that jointly
learns multiple tasks to improve the robustness and generalisa-
tion of tasks. However, most MTL studies use heuristically
configured shared structures, which may lead to dramatic
accuracy loss due to improper sharing of knowledge [19], [20].
Some recent proposals [21], [22] automatically decide “what to
share” in deep neural networks. Yet deep MTL usually
involves enormous training overhead [19]. Hence it is ineffi-
cient to ignore the already trained parameters in each model
and apply MTL for cross-model compression.

1536-1233 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7195-5603
https://orcid.org/0000-0001-7195-5603
https://orcid.org/0000-0001-7195-5603
https://orcid.org/0000-0001-7195-5603
https://orcid.org/0000-0001-7195-5603
https://orcid.org/0000-0002-5457-6967
https://orcid.org/0000-0002-5457-6967
https://orcid.org/0000-0002-5457-6967
https://orcid.org/0000-0002-5457-6967
https://orcid.org/0000-0002-5457-6967
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0003-4048-2684
https://orcid.org/0000-0001-6139-868X
https://orcid.org/0000-0001-6139-868X
https://orcid.org/0000-0001-6139-868X
https://orcid.org/0000-0001-6139-868X
https://orcid.org/0000-0001-6139-868X
mailto:hex@ethz.ch
mailto:thiele@ethz.ch
mailto:xu-wang15@mails.tsinghua.edu.cn
mailto:jiahangok@gmail.com
mailto:TNList and School of SoftwareTsinghua UniveristyBeijing100084China
mailto:TNList and School of SoftwareTsinghua UniveristyBeijing100084China
mailto:zimuzhou@smu.edu.sg

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING

Multi-Taski|,> (l)(l)(l)(l)

Learning |:“>
InpUt I I C l) C l D C l) C l D

Manually Decided Structure From-Scratch Training

Network

C) C) C) C)]
Output é é
Task 4 Task B =
Multi-Task C) ¢ 5 C) ¢ >
Zipping :‘l>

Fig. 1. Differences between multi-task learning (MTL) and our multi-task
zipping (MTZ) as solutions to cross-model compression (illustrated with
two tasks). Given two pre-trained models, MTL manually decides the
shared structures, and then retrain the multi-task model from scratch
i.e., the original weights of the individual models are discarded. In con-
trast, our MTZ automatically determines what to share, and only a light-
weight finetuning is necessary to re-boost the accuracy on each task
because the original weights of the individual models are either kept (for
non-shared neurons) or analytically calculated (for shared neurons).

Auto-Merged Network Lightweight Finetuning

In this paper, we propose Multi-Task Zipping (MTZ), a
framework to automatically and adaptively merge corre-
lated, well-trained deep neural networks for cross-model
compression via neuron sharing. It decides the optimal
sharable pairs of neurons on a layer basis and adjusts their
incoming weights such that minimal errors are introduced
in each task. Unlike MTL, MTZ inherits the parameters of
each model and optimises the information to be shared
among models such that only light retraining is necessary to
resume the accuracy of individual tasks. In effect, it
squeezes the inter-network redundancy from multiple already
trained deep neural networks. MTZ may be further inte-
grated with existing proposals for single-model compression,
which reduce the intra-network redundancy via network
pruning [12], [13], [14], [15] or network quantization [16],
[17].

The contributions and results of this work are as follows.

e We propose MTZ, a framework that automatically
merges multiple correlated, pre-trained deep neural
networks. It squeezes the task relatedness across
models via layer-wise neuron sharing, while requir-
ing light retraining to re-boost the accuracy of the
combined model. We also extend MTZ to support
different layer types and tasks with different input
domains. To the best of our knowledge, this is one of
the first studies on cross-model compression for
deep neural networks.

e MTZ managed to share 39.61% parameters between
the two VGG-16 networks pre-trained for object clas-
sification (on ImageNet [23]) and facial attribute clas-
sification (on CelebA [24]), while incurring less than
0.5% increase in test errors. Even when all the hidden
layers are fully merged, there is a moderate (aver-
aged 3.18%) increase in test errors for both tasks.
MTZ achieves the above performance with at least
17.9x fewer iterations than training a single VGG-16
network from scratch [9].

e MTZ can merge models of different input domains
(e.g., audio- and video-based models), and is able to
share 90% of the parameters among nine ResNets on
nine different visual recognition tasks while inducing

2879

negligible loss on accuracy. Furthermore, with the

joint model merged by MTZ, the latency to switch

between these inference tasks on memory-con-
strained devices can be reduced by 8.71 x.

A preliminary version of this work is presented in [25].

This paper has made the following additional contributions:

e We enhance the theoretical analysis of MTZ by
showing that the accumulated error at the output
layer in our layer-wise neuron sharing is bounded
(Section 3.5).

e We propose an optimised network zipping scheme
for ResNets (Section 4.2.2 to support batch normal-
isation layers and Section 4.2.3 to support residual
blocks).

e We empirically show that MTZ can support different
input domains e.g., audio- and image-based models
(Section 5.3) and is scalable in merging more than
two networks (Section 5.4). Experimental results
show that MTZ can merge 9 ResNets pre-trained for
diverse visual inference tasks, which reduce the
model storage from 9x to only 1.8x of a single
ResNet, with marginal loss in all the 9 inference
tasks. In addition, MTZ can reduce the latency by
8.71x when switching between the 9 inference tasks
on memory-constrained embedded platforms.

In the rest of this paper, we first review related work in
Section 2, and then introduce our MTZ framework in Sec-
tion 3 and its extensions in Section 4. We present the evalua-
tions of MTZ in Section 5 and finally conclude in Section 6.

2 RELATED WORK

MTZ compresses multiple well-trained deep neural net-
works of correlated inference tasks. It is relevant to research
on multi-task learning and single-model compression. Our
work belongs to the emerging field of cross-model compres-
sion and is complementary to resource scheduling of deep
neural networks and edge-assisted inference.

2.1 Multi-Task Learning

Multi-task learning (MTL) jointly trains multiple correlated
tasks to achieve higher accuracy than training each task
individually. Determining “what to share” among tasks is a
central issue in MTL, where can take place at different levels
[19]. For MTL with neural networks, common techniques
include hard or soft parameter sharing of the hidden layers
[20]. Hard parameter sharing enforces sharing most or all of
the parameters among all tasks while keeping a few task-
specific output layers [26]. It causes notable accuracy drop
when many tasks are trained jointly [27]. In soft parameter
sharing, individual tasks are connected via information
sharing [28]. The two sharing schemes can also be combined
for more flexible parameter sharing i.e., adaptively sharing
a subset of parameters in the hidden layers [22].

The shared topology in most MTL studies is heuristically
configured, which may lead to improper knowledge trans-
fer [18]. Only a few schemes [21], [22] optimise what to share
among tasks, especially for deep neural networks. Our MTZ
resembles these automatic shared structure optimisation
studies for MTL in effect, but differs in objectives. MTL

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

2880

jointly trains multiple tasks to improve their generalisation
and accuracy, while MTZ aims to compress multiple already
trained tasks with mild training overhead. Specifically, MTZ
inherits the parameters directly from each pre-trained net-
work when optimising the neurons shared among tasks in
each layer and demands light retraining.

2.2 Single-Model Compression
There have been various model compression proposals to
reduce the size of a single neural network without incurring
loss in accuracy [11]. Pruning-based methods compress a
deep neural network by eliminating unimportant opera-
tions such as weights [13], [14] or neurons [12], [29]. Neu-
ron-level pruning is more desirable since it leads to regular
sparsity in the pruned networks, and thus avoids the need
for customised hardware [11]. The memory footprint of a
neural network can be further reduced by lowering the pre-
cision of parameters (network quantization) [16], [17].
Unlike previous research that deals with the intra-redun-
dancy of a single network, our work reduces the inter-redun-
dancy among multiple networks. In principle, our method is
a neuron-level cross-model pruning scheme. Our work may
be integrated with single-model compression to further
reduce the size of the combined neural network.

2.3 Cross-Model Compression

Cross-model compression aims to construct an accurate and
compact multi-task neural network for efficient inference on
resource-constrained platforms. Georgiev et al. [1] are the
first to explore cross-model compression. They directly
apply MTL techniques by heuristically configuring the
shared structure and training the multi-task network from
scratch. Our preliminary version [25] and NeuralMerger [3]
are among the earliest studies to merge well-trained neural
networks without training from scratch. NeuralMerger [3]
utilises a joint encoding scheme for weight sharing, which
can be understood as a cross-network quantization. Our tech-
nique is orthogonal to [3] since we focus on network merg-
ing. Neural weight virtualisation (NWV) [5] and ZipperNet
[6] are two latest studies that explore merging for cross-
model compression. NWV [5] shares all parameters among
tasks and retrains to recover the accuracy i.e., hard parame-
ter sharing. ZipperNet [6] relaxes the constraint by a layer-
wise merging strategy, i.e., all the parameters are shared till
a given layer. In contract, MTZ allows partial merging in
each hidden layer. In addition, ZipperNet [6] adopts a heu-
ristic neuron similarity metric and only applies to convolu-
tional layers. In contrast, our MTZ shares neurons and
updates weights via sensitivity analysis, and our method
supports not only convolutional layers, but also fully con-
nected layers, batch normalisation layers and residual
blocks. We compare the performance with NWV [5] and
ZipperNet [6] in Section 5.

2.4 Resource Scheduling for Deep Neural Networks
Orthogonal to reducing the complexity of deep neural net-
works themselves, resource scheduling algorithms enables
efficient on-device execution of deep neural networks.
DeepX [30] is a software accelerator that splits deep neural
networks into blocks to be executed across multiple co-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

processors. DeepEye [2] proposes to interleave the execu-
tion of convolutional layers and fully-connected layers from
multiple deep neural networks to improve the runtime effi-
ciency of multi-model execution. NestDNN [4] designs a
dynamic model pruning and recovery scheme and a
resource-aware runtime scheduler to adaptively select the
best models and allocate them to the available resources to
maximise the overall inference accuracy and minimise the
overall latency of concurrently running deep neural net-
works. As with [2], [4], our work also focuses on optimising
multiple deep neural networks. However, our approach is
complementary, which aims to reduce the memory foot-
print of multiple models by enforcing neuron sharing rather
than scheduling their executions.

2.5 Edge-Assisted Deep Inference

In addition to on-device execution, offloading is also a popu-
lar strategy to run deep neural networks in the era of edge
computing [31]. Particularly, the memory- or computation-
intensive portion of a deep model can be offloaded to the
edge to meet the resource constraints on end devices. For
example, DeepDecision [32] dynamically decides whether to
execute the model on-edge or on-device according to the
available resources. Neurosurgeon [33] explores the optimal
layer to partition a deep neural network for collaborative
execution between the edge and the device that minimises
latency and energy consumption. EdgeDuet [34] runs a full
model on-edge and a compressed version on-device and
only uploads image tiles to the full model when necessary.
EalgeEye [35] partitions the multiple-model pipeline for face
identification both spatially and temporally and runs the
partitions in parallel on both the edge and the device. Mag-
num [36] adopts a lightweight blockchain-based framework
to enable transfer learning in industrial IoT applications.

Our work is complementary to model partition. On the
one hand, cross-model compression can be combined with
model partition schemes for higher efficiency when running
multiple tasks in edge-device collaborative inference. For
instance, AMVP [37] proposes an adaptive scheduler that
integrates single- and cross-model compression with model
partition for multi-task video processing at the edge. On the
other hand, model compression is preferable over model
partition to applications where communication with the
edge is prohibited due to data privacy or unreliable network
connections [31], [38], [39], [40].

3 LAYER-WISE NETWORK ZIPPING

This section explains the principles and details of our net-
work zipping method with two feed-forward networks of
dense fully connected (FC) layers. We discuss the exten-
sions to other layers and settings in Section 4.

3.1 Problem Statement

Consider two inference tasks A and B with the correspond-
ing well-trained deep neural networks M# and M?, ie.,
trained to a local minimum in error. We assume the same
input domain and the same number of layers in M* and
M?B. Performing multiple correlated inference tasks on the
same input domain is common in mobile applications (e.g.,
face recognition, age and gender identification from a

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING

i ~A4
—~—
Banr:

(-1:

AN . . NEVANEVAN
After Zipping

Fig. 2. An illustration of neurons and the corresponding weight matrices
before and after zipping the ith layers of M4 and M?.

wearable camera [2], [5]; or speaker identification and ambi-
ent scene analysis from a smartphone microphone [1]).
Note that our method also works for different input
domains (see Section 5.3). The assumption on the same
number of layers follows the practice in multi-task learning
for ease of joint training [19]. Note that the models for differ-
ent tasks can vary in the widths in their layers. Our goal is to
construct a combined model M by sharing as many neu-
rons between layers in M“ and M? as possible such that (i)
M€ has minimal loss in inference accuracy for the two tasks
and (ii) the construction of M involves minimal retraining.
As with other studies on cross-model compression [1], [3],
[5], [6], the process to construct the combined model, i.e.,
model merging and retraining, takes place offline on the
cloud or the edge before model deployment. The combined
model is then deployed to resource-constrained devices for
accurate multi-task inference. Although extensive model
training is affordable on the cloud/edge, it is still desirable
to minimise the retraining overhead to allow fast model
deployment and to serve more model merging requests at
the same time.

3.2 Layer Zipping via Neuron Sharing

We take a layer-wise approach to the neuron sharing prob-
lem described in Section 3.1. This subsection presents the
procedure of zipping the (th layers (1 < [< L — 1) in models
M# and MP given the previous (I — 1) layers of the two
models have been merged (see Fig. 2).

Denote the input layers as the Oth layers. The Lth layers
are the output layers of M* and MP. Denote the welght
matrices of the Ith layers in M* and M” as Wj' € RVEON
and W2 € RM.*M ‘where N and N7 are the numbers of
neurons in the [th layers in M4 and MB. Assume N,_; €
[0,min{N/*;, NZ,}] neurons are shared between the
(- 1)th layers in M* and MP”. Hence there are N, =
N, =N, and NP, = NP, — N, task-specific neurons
left in the (I —1)th layers in M4 and MP. Zipping the Ith
layers in in M“ and M consists of two steps: neuron sharing
and weight matrices updating.

3.2.1 Neuron Sharing

To enforce neuron sharing between the /th layers in M and
M?B, we calculate the functional difference (details in Sec-
tion 3.3) between the ith neuron in layer ! in M 4, and the jth

neuron in the same lac;ler in M3. The functional difference is
Authorized license

2881

measured by a metric d[w;;, w/’], where W, wf’, € RV
are the incoming weights of the two neurons from the shared
neurons in the (I —1)th layer. We do not alter incoming
weights from the non-shared neurons in the (I — 1)th layer
because they are likely to contain task-specific information
only.

To zip the /th layers in M# and M?, we first calculate the
functional difference for each pair of neurons (4, j) in layer [
and select N; € [0, min{N/*, N}] pairs with the smallest
functional difference. These pairs of neurons form a set
{(ir, jx)}, where k=0,..., N; and each pair is merged into
one neuron. Thus the neurons in the /th layers in M* and
M?P fall into three groups: N; shared, Nl =N - N specific
for Aand N = N — N specific for B.

3.22 Weight Matrices Updating

After neuron sharing, the weight matrices W' and W7 are
re-organised as follows. The weights vectors wﬂk and w” o
where k = 0,..., N;, are merged and replaced by a matrix
W, e RNI*IXNZ, whose columns are W = f(wlnlk,wmk)
where f(-) is an incoming weight update function. W, repre-
sents the task-relatedness between A and B from layer (I —

1) to layer I. The incoming weights from the Nj*, neurons in
layer (I—1) to the N/ neurons in layer [in M* form a
matrix WA € RV N . The remaining columns in WA are
packed as W# € RV Matrices Wit and W contain the
task-specific mformatlon for A between layer (I—1) and
layer I. For task B, we organise matrices W € R™i- NP
and W2 ¢ R’ NZ1Ni in a similar manner. We also adjust the
order of rows in the weight matrices in the (I 4 1)th layers,
Wf}H and W/, to maintain the correct connections among
neurons.

The above layer zipping process can reduce N, ; x N
weights from W' and W7. Essential in MTZ are the neuron
functional difference metric d[-] and the incoming weight
update function f(-). They are designed to demand only
light retraining to recover the original accuracy.

3.3 Deriving Neuron Functional Difference Metric

d[-] and Incoming Weight Update Function f(-)
This subsection introduces our neuron functional difference
metric d[-] and weight update function f(-) leveraging previ-
ous research on parameter sensitivity analysis [13], [14].

3.3.1 Preliminaries

A naive approach to accessing the impact of a change in
some parameter vector 6 on the objective function (training
error) E is to apply the parameter change and re-evaluate
the error on the entire training data. An alternative is to
exploit second order derivatives [13], [14]. Specifically, the
Taylor series of the change §F in training error due to cer-
tain parameter vector change 86 is [14]

aE\ " 1+ 3
OE = (55| -80+500" -H -804 0(|80]°), M

where H = 3’ /36 is the Hessian matrix containing all the
second order derivatives. For a network trained to a local
minimum in E, the first term vanishes. The third and higher
order terms can also be ignored [14]. Hence

use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

2882

1
SE = 586T -H- 6. 2

Eq. (2) approximates the deviation in error due to parameter
changes. However, it is still a bottleneck to compute and
store the Hessian matrix H of a modern deep neural net-
work. For instance, applying the weight pruning scheme
proposed in [14] on a VGG-16 model [9] trained on the
ImageNet ILSVRC-2012 dataset [23] requires the calculation
of a Hessian matrix with approximately (138 x 109)* =
1.9044 x 10'® elements.

As next, we harness the trick in [13] to break the calcula-
tions of Hessian matrices into layer-wise, and propose a
Hessian-based neuron difference metric as well as the corre-
sponding weight update function for neuron sharing.

3.3.2 Our Method

Inspired by [13] we define the error functions of M* and
M?P in layer [as

le v =yl (3)
ZH v -yl 4

where yi! and y;' are the pre-activation outputs of the Ith
layers in M* before and after layer zipping, evaluated on
one instance from the training set of A; y/ and y/ are
defined in a similar way; || - || is [*norm; n4 and np are the
number of training samples for M4 and M?, respectively; 3.
is the summation over all training instances. Since M* and
M? are trained to a local minimum in training error, E;!
and EP will have the same minimum points as the corre-
sponding training errors.

We further define an error function of the combined net-
work in layer [as

E =aE!'+ (1 —a)EP, (5)

where « € (0, 1) is used to balance the errors of M4 and MP%.
The change in E; with respect to neuron sharing in the /th
layer can be expressed in a similar form as Eq. (2)

. 1 .
~ANT A s A - B\T B <xB
SEy = (éwp;) - Hp; - 0wy, + B (dwy;) -Hy; - dwp,

N =

(6)

where 8w1 " and sw” ; are the ad]ustmgnts in the weights of
and j to merge the two neurons; Hh = E/ (E)w“)2 and
H’f’; =B/ (awP) denote the layer-wise Hessian matrices.
Similarly to [13], the layer-wise Hessian matrices can be cal-
culated as

HY =25 %t ()T
1,0 na Z X;_1 (xz—l) (7)
11—« B B \T
B n—BZXH (L) ®)
where x| and x7 | are the outputs of layer (I —1) in M4

and MP respectlvely

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

When sharing the ith and jth neurons in the /th layers of
M# and M?®, our aim is to minimize 8 E;, which can be for-
mulated as the optimization problem below

min min SEI}s.t.WA.ﬁ—SWAv:WB,+8‘7VB¢.
(irj) {<5wfi,5wfj) bi hi b L ©

For the inner minimization problem

HllIl

SE; st.Wis + 0w = W/ + oW/,
(8w Bw)

(10)

we form Lagrange multipliers with the second order
approximation in (2)

. 1, ~ _
-SWfi Jrf(éva)T -Hfj . SwP

1 e -

2

F AT (W A+ oW — W) — oW,

where X is the vector of Lagrange undetermined multi-
pliers. By taking functional derivatives and employing the
constraints of Eq. (9), we have closed-form solutions

switr = (A () o))

b (12)

(W), — Wih)

S L -]

sl = (D) (BT @)

(Wi — W)

opt 1 ~ A ~ B\T AN—1 1B\ —1 -1
sy = S (w -l (@D @R
(Wi — W),
We define the neuron functional difference metric as
dwi, wp] = SE", (15)
and the weight update function as

FONE W) = Wik + oW = WP+ sw . (16)

3.4 MTZ Framework
Algorithm 1 outlines the process of MTZ on two tasks of the
same input domain, e.g., images. We first construct a joint
input layer. In case the input layer dimensions are not equal
in both tasks, the dimension of the joint input layer equals
the larger dimension of the two original input layers, and
fictive connections (i.e., weight 0) are added to the model
whose original input layers are smaller. Afterwards we
begin layer-wise neuron sharing and weight matrix updat-
ing from the first hidden layer. The two networks are
“zipped” layer by layer till the last hidden layer and we
obtain a combined network. After merging each layer, the
networks are retrained to re-boost the accuracy.

Practical Issues. We make the following notes on the prac-
ticability of MTZ.

e How to set the number of neurons to be shared? One can
directly set IV; neurons to be shared for the /th layers,
or set a layer-wise threshold ¢; instead. Given a

Authorlzed licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING

threshold ¢;, MTZ shares pairs of neurons where
{(Zk,jk |d[wi oWl < e} In this case N, = |{ (i,
Jk)}- One can set le} if there is a hard constraint on
storage or memory. Otherwise {¢;} can be set if accu-
racy is of higher priority. Note that {¢;} controls the
layer-wise error 8 E;, which correlates to the accumu-
lated errors of the outputs in Iayer L &=
% — x| and 28 = S %P — xF)| 131,
e How to execute the combined model for each task? During

inference, only task-related connections in the com-
bined model are enabled. For instance, when per-

forming inference on task A, we only activate {W7'},
{W#} and {W,}, while {W”} and {W?’} are disabled
(e.g., by setting them to zero).

e How to zip more than two neural networks? MTZ is able
to zip more than two models by sequentially adding
each network into the joint network, and the calcu-
lated Hessian matrices of the already zipped joint
network can be reused. Therefore, MTZ is scalable in
regards to both the depth of each network and the
number of tasks to be zipped. Also note that since
calculating the Hessian matrix of one layer requires
only its layer input, only one forward pass in total
from each model is needed for the merging process
(excluding retraining).

Algorithm 1. Multi-Task Zipping via Layer-Wise Neu-
ron Sharing
input: {W'}, {WP}: weight matrices of M4, M?Z; X4 XZ:
training datum of task A and B (including labels); o:
coefficient to balance M* and M?; {N;}: number of
neurons to be shared in layer
1: fori=1,...,L—1do
2: Calculate inputs for the current layer x*; and x” | using
tNraining data from XA and X” and forward propagation
: Hﬁ "1 Z xz 1 ()T
4: Hfj — 1l nB Zx]-_l -(j_])T
Select N, pairs of neurons {(ix,jr)} with the smallest
d[ﬂrf}i, ij] ~
fork — 1,...,N;do
Wi — f(W WP)
Re-organize Wf and W,B into W, Wf, WZA, WlB and WZB
Permute the order of rows in Wi%; and W}, to maintain
correct connections
10: Conduct a light retraining on task A and B to re-boost
accuracy of the joint model
output: {W'} {Wi} {W,},{WP} {WF}: weights of the
zipped multi-task model M¢

a9

Complexity Analysis. We only analyse the complexity of
the main merging process (Line 3 to 9) and ignore the com-
plexity of the forward and backward propagation of neural
networks (Line 2 and 10). For simplicity, we consider fully
merging two layers from two networks, which both have n
neurons in every hidden layer. Line 3 and 4 take O(n?) time
and O(n?) memory. Line 5 takes O(n®) time and O(n?) mem-
ory (using in-place matrix inversion) to calculate all the par-
ing distances, and then O(n?) to sort them. This is the most
time consuming step, as the calculation of the merging

2883

criterion (15) involves inversion of the Hessian matrices.
There are O(n) iterations in Line 6 and 7, and line 7 takes
O(n?) time and O(n*) memory. Line 8 and 9 take O(n?) time
and O(n?) memory. Therefore, the total time cost is O(n®)
and memory cost is O(n?).

3.5 Propagation of Layer-Wise Error

Note that we define layer-wise error function Eq. (5) to
avoid calculating the entire Hessian matrix. In this subsec-
tion, we demonstrate the effectiveness of such a layer-wise
formulation by proving that the accumulated error at the
output layer is bounded.

To analyse the accumulated error at the output layer, we
investigate how the error Eq. (5) propagates from layer [to
the final output layer. Note that the error function in layer [
consists of two parts, Ef* and EP, as defined in Egs. (3) and
(4), which are defined with pre-activation outputs y;* and
y;'. In order to understand the propagation of errors, how-
ever, we need to take activation function into consideration.
We define

ZII -z an

_ I ysB B2
= nBZ Iz -z (18)
Si=a-&'+(1-a) &, (19)

where 2 = o(y?), 7' = o(3), 2 = o(yf) and 2 = o(3P)
are post-activation layer outputs with activation function
o(-). In this paper, we consider the widely adopted activa-
tion function: rectified linear unit (ReLU).

After merging the Ith layer, there are three groups of neu-
rons: N;* task-A-specific neurons, N/ task-B-specific neu-
rons, and N, shared neurons. When task A is performed,
only task-A-specific and shared neurons are activated. The
connections between the task-A-specific and shared neu-
rons in the [— 1th and [th layer have weights W/

Wt = [WA (20)

W

Similarly, we can define W;B . Furthermore, we denote the
vectorisation of the weight matrices W/ and W/” as V{* and
Vf , respectively.

Adapting the conclusions in [13] to multiple neural net-
works, the propagation of the layer-wise error in MTZ can
be described by the following theorem:

Theorem 1. For a multi-task network merged via Algorithm 1
with L layers, the accumulated error of the last layer output is
upper-bounded by

L-1 L-1
eLsz(a‘;Hlnvﬂ sEp
J=i+ (21)
(1-a) H V2 5E3>
J=i+1

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

2884

Proof. From similar derivation as in [13], we have

L—-1 L
<> (I Wiomt) + ot

i=1 \j=itl

(22)

and the same holds if we switch A with B. However, as

the last layer, i.e., the output layer is untouched, we have
\/8E# = /8EB = 0. Therefore

1< (1w

=1 \j=i+l

(23)

which also holds if we swap A and B. Finally, since & =
a- &+ (1—a)- &P, Eq. (21) holds. 0

4 MTZ EXTENSIONS

In this section, we explain how to extend MTZ to support
sparse models (Section 4.1), other commonly used layers in
computer vision e.g., convolutional (CONV) layers, batch
normalisation (BN) layers and residual blocks (Section 4.2).

4.1 Support for Sparse Models

Since the pre-trained neural networks may have already
been sparsified via weight pruning, we also extend MTZ to
support sparse models. Specifically, we use sparse matrices,
where zeros indicate no connections, to represent such
sparse models. Then the incoming weights from the previ-
ous shared neurons w]Al, Wy, still have the same dimension.
Therefore d[w;’, W] ol f (w]Al, W7) can be calculated as
before. However, we also calculate two mask vectors m;}
and m/ i whose elements are 0 when the corresponding ele-
ments in w;; and W/ >, are 0, and 1 otherwise. We pick the
mask vector with more 1's and apply it to w;. This way the
combined model always have a smaller number of weights
than the sum of the original two models.

4.2 Extension to Other Layers
This subsection introduces how to extend MTZ from FC
layers to CONV layers, BN layers and residual blocks.

4.2.1 Extensions to Convolutional Layers

The layer zipping procedure of two convolutional layers are
similar to that of two fully connected layers. The only differ-
ence is that sharing is performed on kernels rather than neu-
rons. Take the ith kernel of size k; x k; in layer | of M* as an
example. Its incoming weights from the previous shared

kernels are WA " ¢ REkxNiet The weights are then flatten
into a vector wl7 to calculate functional differences. As with
in Section 3.2, after layer zipping in the Ith layers, the weight
matrices in the (I + 1)th layers need careful permutations
regarding the flattening ordering to maintain correct con-
nections among neurons, especially when the next layers
are fully connected layers.

4.2.2 Extensions to Batch Normalisation Layers

BN layers are typically applied on the pre-activation out-
puts of CONV layers. After training, the output of the BN
layer applied on the ith channel of layer [is

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Current Last
Block Block
10
Model A | 0 1
L0 0
Shared /
I 0
ModelB | 0 1
00

Fig. 3. An example of the weight matrices when merging residual blocks
with output dimension of three.

Yii — MKy
St B
1/012_1- +e€

where y;; is the pre-activation output of the CONV layer, y;;
and B;; are the two learnable parameters (scaling and shift-
ing) for the BN layer, u;; and o;; are the pre-calculated
mean and standard deviation.

Since all the parameters are fixed after training, the effect
of the BN layer can be replaced by multiplying the incoming

M
ML to the bias

by;. The calculation of the Hessian matrlces (7) and (8)
remains the same, and in the closed-form solutions
Egs. (12), (13) and (14) the new weights and bias should be
used. Later in the retraining phase, newly initialised BN
layers need to be applied.

BN(yii) = vi; - (24)

weight wi; by a scalar 7= "L and adding B, —

4.2.3 Extensions to Residual Blocks

At the end of each residual block, the output vector of the
last CONV layer is added with the identity shortcut vector.
This addition can be considered as a layer of neurons (chan-
nels) with binary weights (1 or 0) fully connected to the last
convolutional layer and the last shortcut addition layer (or
in the case of the first residual block, it connect to the pre-
convolutional layer). However, in order to continue the
chain of MTZ, the neurons at this addition layer should be
marked as shared /unshared. Since the neuron sharing situ-
ation of the last CONV layer in the current residual block
can be different from of the addition layer of the last resid-
ual block, there might be conflicts. We propose an exact and
an approximate method to combine residual blocks.

Exact Method. We illustrate the exact method via an
example residual block with output dimension of three. In
the last CONV layer of the current block, the first neuron in
model A is shared with the second neuron in model 5, and
the third neuron in model A is shared with the third neuron
in model B. In the addition layer of the last block, the sec-
ond neuron in model A is shared with the second neuron in
model B. Fig. 3 illustrates the weight matrices of the current
addition layers of model A and B, where the red column
indicates the weights from merged neurons, and the weight
matrices from the merged neurons.

As shown in this example, we mark the neurons in the
addition layer as shared /unshared as follows:

e If a neuron in the addition layer is not connecting
(i.e., having non-zero weights) to any shared convo-
lutional neuron or shared shortcut neuron, e.g., the

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING

1.00
& i 2
0.95 A
0.90 A
|S)
o
©
& 0-85 1
>
<
0.80 A
—— MTZ w/o retraining
0.75 === MTZ with retraining
----- Random sharing

0.70

0 50 100 150 200 250 300
Nr. of shared neuron

(a)

2885

1.00

0.90 1

0.85 1

Avg. acc

0.80
—— MTZ w/o retraining
=== MTZ with retraining
----- Random sharing

0.75 1

0.70

0 20 40 60 80 100
Nr. of shared neuron

(b)

Fig. 4. Test error on MNIST by continually sharing neurons in (a) the first and (b) the second fully connected layers of two dense LeNet-300-100 net-

works till the merged layers are fully shared.

first row in the matrices on the right of Fig. 3, this
neuron is marked as unshared.
e In other cases, these addition neurons are merged by
analysing their incoming weights from merged neu-
rons, e.g., the matrices on the right of Fig. 3.
Approximate Method. The exact method above requires an
additional layer to be processed by MTZ, and actually adds
more weights to the model. To avoid this problem, we pro-
pose an approximate method to merge residual blocks. The
idea is to use the neuron sharing scheme of the last CONV
layer in the current residual block as the reference. In other
words, in the last CONV layer in current residual block, if
the ith neuron in model A is merged with jth neuron in
model B, then their corresponding neurons in the addition
layer are also marked as merged.

5 EVALUATIONS

We first evaluate the performance of MTZ on zipping two
networks pre-trained for the same task (Section 5.1) and dif-
ferent tasks (Section 5.2). We mainly assess the test errors of
each task after network zipping and the retraining overhead
involved. We then show that MTZ can merge models for
different input domains (Section 5.3). Finally we show that
MTZ is scalable and reduces the execution time of neural
networks on resource-constrained mobile devices (Sec-
tion 5.4). MTZ is implemented with TensorFlow. All experi-
ments are conducted on a workstation equipped with
Nvidia Titan X Maxwell GPU. The execution time of neural
networks is measured on the Jetson Nano embedded plat-
form [41] equipped with a 128-core Maxwell GPU, a Quad-
core ARM A57 (1.43 GHz) CPU, and 4 GB 64-bit LPDDR4
(25.6 GB/s).

5.1 Zipping Two Networks for the Same Task

This experiment validates the effectiveness of MTZ by
merging two differently trained models for the same task.
Ideally, two models trained to different local optimums
should function the same on the test data. Therefore their
hidden layers can be fully merged without incurring any
accuracy loss. This experiment aims to show that, by finding
the correct pairs of neurons which shares the same function-
ality, MTZ can achieve the theoretical limit of compression
ratio i.e., 100%, even without any retraining involved.

Dataset and Settings. We test on MNIST dataset with the
LeNet-300-100 and LeNet-5 networks [7] to recognise hand-
written digits from 0 to 9. LeNet-300-100 is a fully connected
network with two hidden layers (300 and 100 neurons each),
reporting an error from 1.6% to 1.76% on MNIST [7], [13].
LeNet-5 is a convolutional network with two convolutional
layers and two fully connected layers, which achieves an
error from 0.8% to 1.27% on MNIST [7], [13].

We train two LeNet-300-100 networks of our own with
errors of 1.57% and 1.60%; and two LeNet-5 networks with
errors of 0.89% and 0.95%. All the networks are initialised
randomly with different seeds, and the training data are
also shuffled before every training epoch. After training, the
ordering of neurons/kernels in all hidden layers is once
more randomly permuted. Therefore the models have
completely different parameters (weights). The training of
LeNet-300-100 and LeNet-5 networks requires 1.05 x 10*
and 1.1 x 10* iterations in average, respectively.

For sparse networks, we apply one iteration of L-
OBS [13] to prune the weights of the four LeNet networks.
We then enforce all neurons to be shared in each hidden
layer of the two dense LeNet-300-100 networks, sparse
LeNet-300-100 networks, dense LeNet-5 networks, and
sparse LeNet-5 networks, using MTZ.

Results. Fig. 4a plots the average error after sharing dif-
ferent amounts of neurons in the first layers of two dense
LeNet-300-100 networks. Fig. 4b shows the error by further
merging the second layers. We compare MTZ with a ran-
dom sharing scheme, which shares neurons by first picking
(i, jr) at random, and then choosing randomly between
Wf},ik and Wf’ik as the shared weights w;,. When all the 300
neurons in the first hidden layers are shared, there is an
increase of 0.95% in test error (averaged over the two mod-
els) even without retraining, while random sharing induces
an error of 33.47%. We also use MTZ to fully merge the hid-
den layers in the two LeNet-300-100 networks without any
retraining i.e., without line 10 in Algorithm 1. The averaged
test error increases by only 1.50%.

Table 1 summarises the errors of each LeNet pair before
zipping (err and errp), after fully merged with retraining
(re-errc) and the number of retraining iterations involved (#
re-iter). MTZ consistently achieves lossless network zipping
on FC and CONV networks, either they are dense or sparse,
with 100% parameters of hidden layers shared. Meanwhile,
the number of retraining iterations is approximately 19.0x

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

2886
TABLE 1
Test Errors on MNIST by Sharing all Neurons in Two LeNet
Networks
Model erry errp re-errc # re-iter
LeNet-300-100-Dense 1.57% 1.60% 1.64% 550
LeNet-300-100-Sparse 1.80% 1.81% 1.83% 800
LeNet-5-Dense 0.89% 0.95% 0.93% 600
LeNet-5-Sparse 127% 1.28% 1.29% 1200

and 18.7x fewer than that of training a dense LeNet-300-100
network and a dense LeNet-5 network, respectively.

5.2 Zipping Two Networks for Different Tasks

This experiment evaluates the performance of MTZ to auto-
matically share information among two neural networks for
different tasks. We investigate: (i) what the accuracy loss is
when all hidden layers of two models for different tasks are
fully shared (in purpose of maximal size reduction); (ii)
how much neurons and parameters can be shared between
the two models by MTZ with at most 0.5% increase in test
errors allowed (in purpose of minimal accuracy loss); (iii)
how MTZ performs compared with the state-of-the-art
cross-model compression schemes [5], [6].

Dataset and Settings. We first test the performance of MTZ
for either maximal size reduction or minimal accuracy loss. We
merge two VGG-16 networks trained on the ImageNet
ILSVRC-2012 dataset [23] for object classification and the
CelabA dataset [24] for facial attribute classification. The
ImageNet dataset contains images of 1,000 object categories.
The CelebA dataset consists of 200 thousand celebrity face
images labelled with 40 attribute classes. VGG-16 has 13
convolutional layers and 3 fully connected layers. We adopt
the pre-trained weights from the original VGG-16 model [9]
for the object classification task, which has a 10.31% error.
For the facial attribute classification task, we train a second
VGG-16 model following a similar process as in [10]. We ini-
tialise the convolutional layers of a VGG-16 model using the
pre-trained parameters from imdb-wiki [8], and train the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

remaining 3 fully connected layers till the model yields an
error of 8.50%, which matches the accuracy of the VGG-16
model in [10] on CelebA.

We conduct two experiments with the two VGG-16 mod-
els. (i) All hidden layers in the two models are 100% merged
using MTZ. (ii) Each pair of layers in the two models are
adaptively merged using MTZ allowing an increase
(<0.5%) in test errors on the two datasets.

Results. Table 2 summarises the performance when each
pair of hidden layers are 100% merged. The test errors of
both tasks gradually increase during the zipping procedure
from layer convl_1 to conv5_2 and then the error on
ImageNet surges when conv5_3 are 100% shared. After
1,000 iterations of retraining, the accuracies of both tasks are
resumed. When 100% parameters of all hidden layers are
shared between the two models, the joint model yields test
errors of 14.07% on ImageNet and 11.09% on CelebA, i.e.,
increases of 3.76% and 2.59% in the original test errors.

Table 3 shows the performance when each pair of hidden
layers are adaptively merged. MTZ achieves an increase in
test errors of 0.44% on ImageNet and 0.45% on CelebA.
Approximately 39.61% of the parameters in the two models
are shared (56.94% in the 13 CONV layers and 38.17% in the
2 FC layers). The zipping procedure involves 20,650 itera-
tions of retraining. For comparison, at least 3.7 x 10° itera-
tions are needed to train a VGG-16 network from
scratch [9]. That is, MTZ is able to inherit information from
the pre-trained models and construct a combined model
with an increase in test errors of less than 0.5%. And the
process requires at least 17.9x fewer (re)training iterations
than training a joint network from scratch.

For comparison, we also trained a fully shared multi-task
VGG-16 with two split classification layers jointly on both
tasks. The test errors are 14.88% on ImageNet and 13.29%
on CelebA. This model has exactly the same topology and
amount of parameters as our model constructed by MTZ,
but performs slightly worse on both tasks.

Comparison With State-of-the-Arts. We compare our MTZ
against two recent cross-model compression schemes,
Neural Weight Virtualisation [5] (NWV for short) and

TABLE 2
Test Errors and Retraining lterations of Sharing all Neurons (output layer fc8 excluded) in Two VGG-16 Networks for
ImageNet and CelebA

Layer N ImageNet (Top-5 Error) CelebA (Error) # re-iter
w/o-re-err¢ re-err¢ w/o-re-err¢ re-err¢

convl_1 64 10.59% 10.61% 8.45% 8.43% 50
convl_2 64 11.19% 10.78% 8.82% 8.77% 100
conv2_1 128 10.99% 10.68% 8.91% 8.82% 100
conv2_2 128 11.31% 11.03% 9.23% 9.07% 100
conv3_1 256 11.65% 11.46% 9.16% 9.04% 100
conv3_2 256 11.92% 11.83% 9.17% 9.05% 100
conv3_3 256 12.54% 12.41% 9.46% 9.34% 100
convé4_1 512 13.40% 12.28% 10.18% 9.69% 400
conv4_2 512 13.02% 12.62% 10.65% 10.25% 400
conv4_3 512 13.11% 12.97% 12.03% 10.92% 400
convb_1 512 13.46% 13.09% 12.62% 11.68% 400
convb5_2 512 13.77% 13.20% 12.61% 11.64% 400
convb5_3 512 36.07% 13.35% 13.10% 12.01% 1% 10°
fc6 4096 15.08% 15.17% 12.31% 11.71% 2 x 10
fc7 4096 15.73% 14.07% 11.98% 11.09% 1 x 10*

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING

2887

TABLE 3
Test Errors, Number of Shared Neurons, and Retraining Iterations of Adaptively Zipping Two VGG-16 Networks for ImageNet and
CelebA
Layer Nf N, ImageNet (Top-5 Error) CelebA (Error) # re-iter
w/o-re-err¢ re-err¢ w/o-re-errg re-err¢

convl_1 64 64 10.28% 10.37% 8.39% 8.33% 50
convl_2 64 64 10.93% 10.50% 8.77% 8.54% 100
conv2_1 128 96 10.74% 10.57% 8.62% 8.46% 100
conv2_2 128 96 10.87% 10.79% 8.56% 8.47% 100
conv3_1 256 192 10.83% 10.76% 8.62% 8.48% 100
conv3_2 256 192 10.92% 10.71% 8.52% 8.44% 100
conv3_3 256 192 10.86% 10.71% 8.83% 8.63% 100
conv4_1 512 384 10.69% 10.51% 9.39% 8.71% 400
conv4_2 512 320 10.43% 10.46% 9.06% 8.80% 400
conv4_3 512 320 10.56% 10.36% 9.36% 8.93% 400
conv5_1 512 436 10.42% 10.51% 9.54% 9.15% 400
conv5_2 512 436 10.47% 10.49% 9.43% 9.16% 400
conv5_3 512 436 10.49% 10.24% 9.61% 9.07% 1x 103
fc6 4096 1792 11.46% 11.33% 9.37% 9.18% 2 x 10°
fe7 4096 4096 11.45% 10.75% 9.15% 8.95% 1.5 x 10*

ZipperNet [6] in the fully shared setting, i.e., in purpose of
maximal size reduction. We choose the fully shared setting
because NWV adopts hard parameter sharing, i.e., parame-
ters are shared across all tasks. ZipperNet allows partial
parameter sharing but all the weights within a layer are fully
shared.

To compare with ZipperNet [6], we apply it to merge two
VGG-16 networks pre-trained on ImageNet and CelabA as
above. Specifically, we perform filter alignment by Hungar-
ian algorithm for each CONV layer and then retrain the
merged network as [6]. The merging process starts with the
first CONV layer and continues until all CONV layers are
merged. Since ZipperNet does not apply to FC layers, we
leave the two FC layers in the VGG-16 separate. For fair
comparison, the number of retraining iterations for each
CONV layer is set to the same as our MTZ (detailed num-
bers see Table 2). Fig. 5 plots the test errors after fully merg-
ing each CONV layer in the two VGG-16 networks. In
general, ZipperNet performs worse than MTZ in terms of
accuracy after merging. The difference gets increasingly evi-
dent after merging the conv4_2 layer. In the end, Zipper-
Net only achieves a test errors of 15.43% on ImageNet and
12.74% on CelebA, 2.08% and 0.73% worse than MTZ.

15.0%

14.0%

13.0%

Re-error
=
I¥)
o
=

11.0%

10.0% —/— MTZ-ImageNet

Y ~~ MTZ-CelebA
9.0% H/A_\/—\)/\/ ZipperNet-ImageNet
ol ZipperNet-CelebA
11 12 21 22 31 32 33 41 42 43 51 52 53
Conv Layer

Fig. 5. Test errors after merging each CONV layer in two VGG-16 net-
works for ImageNet and CelebA using ZipperNet [6].

For comparison with NWYV [5], we merge two ResNet-28
networks [42] to cover diverse model architectures. The two
ResNet-28 networks are pre-trained on German Traffic Sign
Recognition Benchmark (GTSRB) [43] and Street View
House Numbers (SVHN) [44]. Table 7 provides a summary
of the datasets. When merging the two ResNet-28 networks
with NWYV, the weights are organised into 5,822 weight-
pages with a page size of 1,000. Then the weight-pages are
retrained as in NWV to recover the inference accuracy.
Table 4 lists the test errors of the fully shared ResNet-28
model merged by NWV and MTZ. MTZ achieves better
accuracy than NMV on both tasks after merging. Compared
with NWV, MTZ yields 5.99% lower error on GTSRB and
0.79% on SVHN.

To demonstrate the feasibility of MTZ on merging mod-
els of similar architectures yet different depth, we further
merge a ResNet-28 network and a ResNet-34 network,
which are pretrained respectively on GTSRB and SVHN.
The two networks are merged layer-by-layer from the first
layers and the extra layers in the ResNet-34 are left indepen-
dent. Table 5 shows the test errors of the merged model. We
can see that the merged model performs well on both tasks,
showing the effectiveness of MTZ merging networks with

different depth.

5.3 Zipping Two Networks for Different Input
Domains

This experiment evaluates the performance of MTZ to

merge two models for different input domains. The aim is

to show the potential memory saving to share information

TABLE 4
Test Errors of the Joint Network Merged by NWV [5] and MTZ
GTSRB SVHN Average
NWV 7.04% 7.65% 7.35%
MTZ 1.05% 6.86% 3.96%

The joint model is fully shared except the last classification layer.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

2888

TABLE 5
Test Errors of the Joint Network by Merging ResNet-28 (pre-
trained on GTSRB) and ResNet-34 (pretrained on SVHN) Using
MTZ

GTSRB
1.14%

SVHN
6.80%

Average
3.97%

MTZ

The joint model is merged layer-by-layer from the first layers.

TABLE 6
Test Errors of Audio Emotion Classification Network, Visual
Emotion Classification Network and the Joint Network Merged

by MTZ
Model ResNet-28- ResNet-28- ResNet-28- MTZ
Audio Video Fusion
#par. 1.0x 1.0 x 2.0 x 1.1 x
Test 43.02% 39.65% 24.74% 28.42%
Error

1x is the number of parameters of one single ResNet excluding the last classifi-
cation layer.

among different models, even if they are designed for dif-
ferent input domains, e.g., one for audio and the other for
visual input. This is common in mobile and ubiquitous com-
puting with multiple sensing modalities.

Dataset and Settings. We experiment with an audio-visual
emotion classification task, where we perform emotion rec-
ognition from speech and facial expression [45]. We use the
same models as [45], where one ResNet-28 network is used
to extract audio representations and the other ResNet-28
network is used to extract facial features from video frames.
The audio and video features are concatenated and fed to
full connected layers for emotion recognition. The perfor-
mance of emotion recognition is assessed on the RML
audio-visual dataset [46]. The RML database contains 720
utterances from 8 participants with 6 emotions: anger, dis-
gust, fear, joy, sadness, and surprise.

We first train the two ResNet-28 networks for audio emo-
tion classification (ResNet-28-Audio) and video emotion
classification (ResNet-28-Video) respectively. The two mod-
els are then merged via full connected layers and fine-tuned
for audio-emotion classification (ResNet-28-Fusion). Finally
we enforce sharing 90% of the neurons in the two networks
(the last classification layer excluded) via MTZ, which leads
to a joint model of 1.1x the size of a single ResNet-28
network.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

Fig. 6. Hardware setup to measure the execution time of the nine infer-
ence tasks (the photo was for the traffic sign recognition task, i.e., the
GTSRB dataset [43]) on the Jetson Nano embedded platform.

Results. Table 6 shows the accuracy of different models
on emotion classification. Comparing ResNet-28-Fusion
with ResNet-28-Audio and ResNet-28-Video, the emotion
recognition error drops significantly from around 40% to
about 25%. However, this accuracy gain is at the cost of dou-
ble the size of the model, i.e., having twice the number of
parameters of a single ResNet-28 network. Our MTZ
method is able to enforce information sharing between
ResNet-28-Audio and ResNet-28-Video. Specifically, com-
pared with ResNet-28-Fusion, our joint model only has 1.1
times the number of the parameters (in contrast to 2 times),
with only a 3.68% drop in emotion recognition accuracy.
The results indicate that inter-redundancy is not limited to
models with the same input domain and MTZ is able to
suppress inter-redundancy among models for different
input domains.

5.4 Zipping More Than Two Networks

This experiment evaluates the scalability of MTZ and the
benefit of cross-model compression for running multiple
models on embedded platforms. We investigate: (i) what
the accuracy loss is if more than two models are merged;
and (ii) what is the reduction in the model-switching time
on resource-limited devices if multiple models are merged.

TABLE 7
A Brief Description of the Datasets That Each ResNet-28 Network is Trained on

Dataset Brief Description

CIFART100 [48] 60,000 colour images of 100 different object categories

GTSRB [43] 50,000+ images for 43 traffic sign classes in different resolutions
Omniglot [49] 1,623 different handwritten characters from 50 different alphabets
SVHN [44] 70,000 images of digits cropped from street views

UCF101 [50] 13,320 videos clips collected from YouTube for 101 action categories
Flowers102 [51] 8,189 images of 102 categories of flowers

DPed [52] 50,000 grey-scale images of pedestrians and non-pedestrians

DTD [53] 5,640 texture images of 47 terms (categories) e.g., bubbly

FGVC-Aircraft [54]

10,000 images of 100 different aircraft models e.g., Airbus A310

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING 2889
TABLE 8
Test Errors of Pre-Trained Single ResNets and the Joint Network Merged by MTZ
CIFAR100 GTSRB Omniglot SVHN UCF101 Flowers102 DPed DTD FGVC-Aircraft Average
Single 28.97% 0.56% 14.97% 6.04% 36.68% 37.45% 0.56% 67.61% 58.75% 27.96%
Joint 31.88% 0.51% 16.94% 6.70% 36.22% 37.35% 051% 67.71% 58.30% 28.42%

The joint model is compressed to 1.8x of a single model. 1x is the number of parameters of a single ResNet-28 excluding the last classification layer. Without

MTZ the joint model would have a size of 9x.

Dataset and Settings. We adopt the models and datasets
in [47], a recent work on multi-task learning with ResNets.
Specifically, nine ResNet-28 networks [42] are trained for
diverse image recognition tasks, including CIFAR100 [48],
German Traffic Sign Recognition Benchmark (GTSRB) [43],
Omniglot [49], Street View House Numbers (SVHN) [44],
UCF101 [50], Flowers102 [51], Daimler Mono Pedestrian
Classification Benchmark (DPed) [52], Describable Texture
Dataset (DTD) [53] and FGVC-Aircraft [54]. Table 7 pro-
vides a brief summary of the datasets.

To test the scalability of MTZ, we enforce sharing 90% of
the neurons in a single ResNet-28 network with the other
eight models, and evaluate the accuracy of the joint model
on each of the nine task.

To show the benefit of executing a compact joint
model, we measure the delay when switching between
the nine inference tasks on the Jetson Nano embedded
platform [41]. A 32GB Sandisk microSD is connected to
the platform to storage the neural networks. To perform
inference tasks on-device, the corresponding model
should be loaded from the microSD to the memory.
When a new task is performed, the parameters of the
new model are loaded and the old parameters in the
memory are overwritten, as the memory resource is lim-
ited. Fig. 6 illustrates the setup to measure the execution
time of the visual inference tasks on the embedded plat-
form. To measure the model-switching time, tasks are
performed in a random sequence but each one from the
9 tasks is performed 10 times.

Results. Table 8 shows the accuracy of each individual
pre-trained model and the joint model on the nine tasks.
Compared with each individual model, the accuracy of the
joint model only drops by 0.46% (averaged across the nine
tasks). However, the total storage for the nine models

I Baseline
N MTZ
1.5
a
9]
£
L
<
=
3
)
0.5
0 & 9O B Q *
I3 S] /9 Q KY § S é\’
S &8 Q2 L £ 5 & 5
-5 < (2] G J
T <& o g § g
5 & S
o & S) 19
> T
&£

Fig. 7. Averaged model-switching time between the nine tasks.

decreases from 9x to only 1.8x of a single ResNet-28 net-
work. The results show that MTZ is able to enforce neuron
sharing among dozens of models for diverse tasks while
retaining the inference accuracy on each task.

Fig. 7 shows the averaged time needed to update the
parameters in the memory for new tasks. As 90% of the
parameters are shared, only 10% of the parameters in the
memory are needed to be updated when we use the joint
model. Hence the model-switching time when using the
joint model is significantly lower than that when using indi-
vidual models. In general, the joint model is able to achieve
8.71x lower model-switching time.

6 CONCLUSION

We propose MTZ, a framework to automatically merge
multiple correlated, well-trained deep neural networks for
cross-model compression via neuron sharing. It selectively
shares neurons and optimally updates their incoming
weights on a layer basis to minimise the errors induced to
each individual task. Only light retraining is necessary to
resume the accuracy of the joint model on each task. Evalua-
tions show that MTZ can fully merge two VGG-16 networks
with an error increase of 3.76% and 2.59% on ImageNet for
object classification and on CelebA for facial attribute classi-
fication, or share 39.61% parameters between the two mod-
els with < 0.5% error increase. The number of iterations to
retrain the combined model is 17.9x lower than that of
training a single VGG-16 network. Meanwhile, MTZ is able
to share 90% of the parameters among nine ResNets on nine
different visual recognition tasks while inducing negligible
loss on accuracy. The joint model also reduces the model-
switching time between these inference tasks on memory-
constrained devices by 8.71x. Experiments also show that
MTZ is applicable to sparse networks and models for differ-
ent input domains.

REFERENCES

[1] P. Georgiev, S. Bhattacharya, N. D. Lane, and C. Mascolo, “Low-
resource multi-task audio sensing for mobile and embedded devi-
ces via shared deep neural network representations,” Proc. ACM
Interactive Mobile Wearable Ubiquitous Technol., vol. 1, no. 3,
pp. 50:1-50:19, 2017.

[2] A.Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar, “DeepEye: Resource efficient local execution of multi-
ple deep vision models using wearable commodity hardware,” in
Proc. ACM Annu. Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 68-81.

[3] Y.-M. Chou, Y.-M. Chan, J.-H. Lee, C.-Y. Chiu, and C.-S. Chen,
“Unifying and merging well-trained deep neural networks for
inference stage,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp- 2049-2056.

[4] B. Fang, X. Zeng, and M. Zhang, “NestDNN: Resource-aware
multi-tenant on-device deep learning for continuous mobile
vision,” in Proc. ACM Annu. Int. Conf. Mobile Comput. Netw., 2018,

p. 115-127.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

2890

[5]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Lee and S. Nirjon, “Fast and scalable in-memory deep multitask
learning via neural weight virtualization,” in Proc. ACM Annu.
Int. Conf. Mobile Syst. Appl. Serv., 2020, pp. 175-190.

C.-E. Wu, J.-H. Lee, T. S. Wan, Y.-M. Chan, and C.-S. Chen,
“Merging well-trained deep CNN models for efficient inference,”
in Proc. IEEE Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit
Conf., 2020, pp. 1594-1600.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

R. Rothe, R. Timofte, and L. Van Gool , “Deep expectation of real
and apparent age from a single image without facial landmarks,”
Int. J. Comput. Vis., vol. 126, no. 2/4, pp. 144-157, 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

Y. Lu, A. Kumar, S. Zhai, Y. Cheng, T. Javidi, and R. Feris, “Fully-
adaptive feature sharing in multi-task networks with applications
in person attribute classification,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 5334-5343.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive
survey,” Proc. IEEE, vol. 108, no. 4, pp. 485-532, Apr. 2020.

B. Dai, C. Zhu, B. Guo, and D. Wipf, “Compressing neural net-
works using the variational information bottleneck,” in Proc.
ACM Int. Conf. Mach. Learn., 2018, pp. 1143-1152.

X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural net-
works via layer-wise optimal brain surgeon,” in Proc. 31st Int.
Conf. Neural Inf. Process. Syst., 2017, pp. 4860-4874.

B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Proc. 5th Int. Conf. Neural Inf.
Process. Syst., 1993, pp. 164-171.

S. Liu et al., “AdaDeep: A usage-driven, automated deep model
compression framework for enabling ubiquitous intelligent
mobiles,” IEEE Trans. Mobile Comput., early access, Jun. 4, 2020,
doi: 10.1109/TMC.2020.2999956.

M. Courbariaux, Y. Bengio, and].-P. David, “BinaryConnect:
Training deep neural networks with binary weights during prop-
agations,” in Proc. 28th Int. Conf. Neural Inf. Process. Syst., 2015,
pp- 3123-3131.

Z. Qu, Z. Zhou, Y. Cheng, and L. Thiele, “Adaptive loss-aware
quantization for multi-bit networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 7988-7997.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable
are features in deep neural networks?,” in Proc. 27th Int. Conf. Neu-
ral Inf. Process. Syst., 2014, pp. 3320-3328.

Y. Zhang and Q. Yang, “An overview of multi-task learning,” Nat.
Sci. Rev., vol. 5, no. 1, pp. 3043, 2018.

S. Ruder, “An overview of multi-task learning in deep neural
networks,” 2017. [Online]. Available: https:/ /arxiv.org/abs/1706.05098
Y. Yang and T. Hospedales, “Deep multi-task representation
learning: A tensor factorisation approach,” in Proc. Int. Conf. Learn.
Representations, 2016. [Online]. Available: https://openreview.
net/forum?id=SkhU2fcll

X. Sun, R. Panda, R. Feris, and K. Saenko, “AdaShare: Learning
what to share for efficient deep multi-task learning,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2020, pp. 8728-8740.

O. Russakovsky ef al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attrib-
utes in the wild,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 3730-3738.

X. He, Z. Zhou, and L. Thiele, “Multi-task zipping via layer-wise
neuron sharing,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 6019-6029.

H. Bilen and A. Vedaldi, “Integrated perception with recurrent
multi-task neural networks,” in Proc. 30th Int. Conf. Neural Inf. Pro-
cess. Syst., 2016, pp. 235-243.

T. Standley, A. Zamir, D. Chen, L. Guibas, J. Malik, and
S. Savarese, “Which tasks should be learned together in multi-task
learning?,” in Proc. ACM Int. Conf. Mach. Learn., 2020, pp. 9120-9132.
I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch
networks for multi-task learning,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2016, pp. 3994-4003.

P. Molchanov, A. Mallya, S. Tyree, 1. Frosio, and]. Kautz,
“Importance estimation for neural network pruning,” in Proc. IEEE/
CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 11264-11 272.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

N. D. Lane et al., “DeepX: A software accelerator for low-power
deep learning inference on mobile devices,” in Proc. ACM/IEEE
Int. Conf. Inf. Process. Sensor Netw., 2016, pp. 1-12.

Z.Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and]. Zhang, “Edge intel-
ligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738-1762, Aug. 2019.
X. Ran, H. Chen, X. Zhu, Z. Liu, and]J. Chen, “DeepDecision: A
mobile deep learning framework for edge video analytics,” in
Proc. IEEE Int. Conf. Comput. Commun., 2018, pp. 1421-1429.

Y. Kang et al., “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” ACM SIGARCH Comput. Architecture
News, vol. 45, no. 1, pp. 615-629, 2017.

X. Wang, Z. Yang,]J. Wu, Y. Zhao, and Z. Zhou, “EdgeDuet:
Tiling small object detection for edge assisted autonomous
mobile vision,” in Proc. IEEE Int. Conf. Comput. Commun., 2021,
pp- 1-10.

J.Yi, S. Choi, and Y. Lee, “EagleEye: Wearable camera-based per-
son identification in crowded urban spaces,” in Proc. ACM Annu.
Int. Conf. Mobile Comput. Netw., 2020, pp. 1-14.

P.K. Deb, S. Misra, T. Sarkar, and A. Mukherjee, “Magnum: A dis-
tributed framework for enabling transfer learning in B5G-enabled
industrial-IoT,” IEEE Trans. Ind. Informat., vol. 17, no. 10, pp.
7133-7140, Oct. 2021.

M. Chao, R. Stoleru, L. Jin, S. Yao, M. Maurice, and R. Blalock,
“AMVP: Adaptive CNN-based multitask video processing on
mobile stream processing platforms,” in Proc. IEEE/ACM Symp.
Edge Comput., 2020, pp. 96-109.

Z. Ouyang,]. Niu, Y. Liu, and M. Guizani, “Deep CNN-based
real-time traffic light detector for self-driving vehicles,” IEEE
Trans. Mobile Comput., vol. 19, no. 2, pp. 300-313, Feb. 2020.

C. Wang, Y. Xiao, X. Gao, L. Li, and J. Wang, “A framework for
behavioral biometric authentication using deep metric learning
on mobile devices,” IEEE Trans. Mobile Comput., early access, Apr.
12,2021, doi: 10.1109/TMC.2021.3072608.

Y. Zhang, T. Gu, and X. Zhang, “MDLdroidLite: A release-and-
inhibit control approach to resource-efficient deep neural net-
works on mobile devices,” IEEE Trans. Mobile Comput., early
access, Feb. 26,2021, doi: 10.1109/TMC.2021.3062575.

NVIDIA, “Jetson nano developer kit,” 2020. [Online]. Available:
https:/ /developer.nvidia.com/embedded /jetson-nano-
developer-kit

S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016.
[Online]. Available: https://arxiv.org/abs/1605.07146

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign
recognition,” Neural Netw., vol. 32, pp. 323-332, 2012.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature
learning,” in Proc. NIPS Workshop Deep Learn. Unsupervised Feature
Learn., 2011, vol. 2011, Art. no. 5.

S.Zhang, S. Zhang, T. Huang, and W. Gao, “Multimodal deep con-
volutional neural network for audio-visual emotion recognition,”
in Proc. ACM Int. Conf. Multimedia Retrieval, 2016, pp. 281-284.

Y. Wang and L. Guan, “Recognizing human emotional state from
audiovisual signals,” IEEE Trans. Multimedia, vol. 10, no. 5,
pp- 936-946, Aug. 2008.

S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual
domains with residual adapters,” in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 506-516.

A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” Univ. Toronto, Toronto, Canada, Tech.
Rep. TR-2009, 2009.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Sci-
ence, vol. 350, no. 6266, pp. 1332-1338, 2015.

K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012. [Online].
Available: https:/ /arxiv.org/abs/1212.0402

M.-E. Nilsback and A. Zisserman, “Automated flower classifica-
tion over a large number of classes,” in Proc. IEEE Indian Conf.
Comput. Vis. Graph. Image Process., 2008, pp. 722-729.

S. Munder and D. M. Gavrila, “An experimental study on pedes-
trian classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28,
no. 11, pp. 1863-1868, Nov. 2006.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
“Describing textures in the wild,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2014, pp. 3606-3613.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/TMC.2020.2999956
https://arxiv.org/abs/1706.05098
https://openreview.net/forum?id=SkhU2fcll
https://openreview.net/forum?id=SkhU2fcll
http://dx.doi.org/10.1109/TMC.2021.3072608
http://dx.doi.org/10.1109/TMC.2021.3062575
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1212.0402

HE ET AL.: ON-DEVICE DEEP MULTI-TASK INFERENCE VIA MULTI-TASK ZIPPING

[54] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” 2013. [Online]. Available:
https:/ /arxiv.org/abs/1306.5151

Xiaoxi He (Student Member, IEEE) received the
BSc degree in electrical engineering and informa-
tion technology from Leibniz University Hannover,
Germany, in 2015, and the MSc degree from
ETH Zurich, Switzerland, in 2017. He is currently
working toward the PhD degree with the Group of
Prof. L. Thiele, Computer Engineering and Net-
works Laboratory, ETH Zurich, Switzerland, since
2017. His research interests include deep learn-
ing theory and machine learning applications in
mobile embedded system.

Xu Wang (Student Member, IEEE) received the
BE and PhD degrees from the School of Software,
Tsinghua University, China, in 2015 and 2020,
respectively. He is currently a postdoctoral res-ear-
cher in the School of Software, Tsinghua Univer-
sity, China. He is a member of the Tsinghua
National Lab for Information Science and Technol-
ogy. His research interests include mobile comput-
ing and machine learning.

Zimu Zhou (Member, IEEE) received the BE
degree from the Department of Electronic Engi-
neering, Tsinghua University, China, in 2011, and
the PhD degree from the Department of Computer
Science and Engineering, Hong Kong University of
Science and Technology, Hong Kong, in 2015. He
is currently an assistant professor at the School of
Information Systems, Singapore Management
University, Singapore. His research interests
include mobile and ubiquitous computing.

Jiahang Wu (Student Member, IEEE) received the
BE degree from the School of Software, Beijing
Jiaotong University, China, in 2020. He is currently
working toward the ME degree in the School of Soft-
ware, Tsinghua University, China. He is a member
of the Tsinghua National Lab for Information Sci-
ence and Technology. His research interests
include Internet of Things and edge computing.

2891

Zheng Yang (Senior Member, IEEE) received the
BE degree in computer science from Tsinghua
University, China, in 2006, and the PhD degree in
computer science from the Hong Kong University
of Science and Technology, Hong Kong, in 2010.
He is currently a professor at Tsinghua University,
China. His research interests include wireless ad-
hoc/sensor networks and mobile computing.

Lothar Thiele (Member, IEEE) received the Dip-
lomIngenieur and Dr.-Ing. degrees in electrical
engineering from the Technical University of
Munich, Germany, in 1981 and 1985, respec-
tively. He joined ETH Zurich, Switzerland, as a full
professor of computer engineering, in 1994,
where he currently leads the Computer Engineer-
ing and Networks Laboratory. His research inter-
ests include models, methods and software tools
for the design of embedded systems, embedded
software and bioinspired optimization techniques.
He is associate editor of the IEEE Transaction on Industrial Informatics,
IEEE Transactions on Evolutionary Computation, Journal of Real-Time
Systems, Journal of Signal Processing Systems, Journal of Systems
Architecture, and INTEGRATION, VLSI Journal. In 1986 he received the
Dissertation Award of the Technical University of Munich, Germany, in
1987, the Outstanding Young Author Award of IEEE Circuits and Sys-
tems Society, in 1988, the Browder J. Thompson Memorial Award of the
IEEE, and in 2000/2001, IBM Faculty Partnership Award. In 2004, he
joined the German Academy of Sciences Leopoldina. In 2005, he was
the recipient of Honorary Blaise Pascal chair of University Leiden, The
Netherlands. Since 2009 he is a member of the Foundation Board of
Hasler Foundation, Switzerland. Since 2010, he is a member of the Aca-
demia Europaea. In 2013, he joined the National Research Council of
the Swiss National Science Foundation. He received the EDAA Lifetime
Achievement Award in 2015. Since 2017, he is associate vice president
of ETH for Digital Transformation.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Tsinghua University. Downloaded on January 07,2024 at 06:24:35 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1306.5151

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

