o.)

Check for
updates

Urban Scale Trade Area Characterization for Commercial
Districts with Cellular Footprints

Y1 ZHAOQ, School of Software and BNRist, Tsinghua University, China
ZIMU ZHOU, School of Information Systems, Singapore Management University
XU WANG, TONGTONG LIU, and ZHENG YANG, School of Software and BNRist, Tsinghua

University, China

Understanding customer mobility patterns to commercial districts is crucial for urban planning, facility man-
agement, and business strategies. Trade areas are a widely applied measure to quantify where the visitors
are from. Traditional trade area analysis is limited to small-scale or store-level studies, because information
such as visits to competitor commercial entities and place of residence is collected by labour-intensive ques-
tionnaires or heavily biased location-based social media data. In this article, we propose CellTradeMap, a
novel district-level trade area analysis framework using mobile flow records (MFRs), a type of fine-grained
cellular network data. We show that compared to traditional cellular data and social network check-in data,
MFRs can model customer mobility patterns comprehensively at urban scale. CellTradeMap extracts robust
location information from the irregularly sampled, noisy MFRs, adapts the generic trade area analysis frame-
work to incorporate cellular data, and enhances the original trade area model with cellular-based features.
We evaluate CellTradeMap on two large-scale cellular network datasets covering 3.5 million and 1.8 million
mobile phone users in two metropolis in China, respectively. Experimental results show that the trade areas
extracted by CellTradeMap are aligned with domain knowledge and CellTradeMap can model trade areas
with a high predictive accuracy.
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1 INTRODUCTION

The ubiquity of mobile devices and the development of cellular networks have generated unprece-
dented telecommunication big data. There have been more mobile devices than humans world-
wide [2]. These devices access cellular networks for various applications, such as news browsing,
instant messages, mobile videos, mobile games, and so on. It is predicted that the annual mobile
Internet traffic will exceed half a ZB (102! B) by 2021 [5].

The tremendous amounts of cellular network records contain precious business values. Cel-
lular data have long served as approximated locations of mobile users at the granularity of cell
towers [27, 37]. Over the past decade, researchers have exploited cellular data to mine customer
mobility behaviour for various business strategies and applications such as mobile advertising [9],
optimal store location planning [17], and commercial activeness prediction [33].

One expressive, widely adopted approach to characterize customer mobility pattern is trade
areas. A trade area is “a geographically delineated region containing potential customers,” which
quantifies the distributions of visitors to a store or a commercial district [14]. In other words, the
trade area of a store or a commercial district depicts the origins (i.e., home locations) of visitors
and the corresponding visit probabilities. Understanding where the visitors come from and their
choices of competitive stores or commercial districts is vital to optimize market management and
strategies.

Despite its importance, trade area analysis has long been considered expensive and time-
consuming. The major burden is the efforts to estimate the number of visitation to a store or
commercial district and all of its competitors, as well as to collect home information of the visi-
tors. Traditionally, such information is manually collected from questionnaires and surveys [31].
Researchers interview the residents in an area to know how often people visit commercial areas
and which commercial districts they visit. Such methods are laborious and limited in small scale.

Other studies [17, 23, 31] utilize location data from social media as alternative method for trade
area analysis. Check-in data from social media prove effective due to their ease to be collected
at large scale [23]. However, inferring place of home and collecting comprehensive visitation in-
formation of competitor businesses are very difficult based on the biased and limited check-in
data [18]. Furthermore, it is difficult to aggregate the trade area of stores to obtain the trade area
of commercial districts without bias. Call Detail Records (CDR) can also provide location informa-
tion but only when users make or receive phone calls. This make CDR data very sparse and unable
to support detailed inspection such as trade area analysis.

To fill the void of cost-effective, urban-scale, comprehensive trade area analysis for commercial
districts, we explore mobile flow records (MFR), a fine-grained cellular network data source that
has recently attract much research attention [20]. MFRs are system logs of cellular network that
describe the Internet access behaviour of phone users. The wide spatial coverage (e.g., 3.5 million
mobile phone users in a metropolis) and high time resolution (e.g., 4-minute sampling rate) make
them suited for comprehensive district-level trade area analysis. In comparison, effective check-ins
may be sparse and contain data for limited numbers and types of stores (e.g., four stores in New
York with 0.1 check-in per user per day [23]).

We propose CellTradeMap, an MFR-based framework to delineate and model trade areas for
commercial districts. We base our design upon large-scale MFR datasets covering millions of
anonymous mobile phone users in two metropolises of China, which makes urban-scale analysis
possible. Through measurement studies, we investigate the irregular sampling and frequent base
station switch problems of the MFR data. To tackle these challenges, we design a novel and prac-
tical pipeline to extract robust location information in the form of stay points from raw MFRs. We
also adapt the generic trade area analysis framework [25] to incorporate this cellular data, extend
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Fig. 1. (a) Spatial distributions of MFRs in 1 hour. (b) Trade areas of all commercial districts in a city. Red
circles are commercial districts. The contour maps around circles are the corresponding trade areas.

the scope of trade area analysis to various attractiveness metrics, and improve the accuracy of the

widely adopted trade area model [14] by adding MFR-based metrics and L' -norm. Figure 1(a) shows

the spatial distribution of our MFR dataset within an hour, and Figure 1(b) illustrates the trade areas

of all the commercial districts in the city derived from CellTradeMap in the form of contour maps.
We summarize the main contributions of this work below.

e To the best of our knowledge, this is the first work that utilizes flow-level data of cellular
networks to profile and model trade areas for commercial districts. It offers a new cost-
effective data collection methodology for urban-scale district-level trade area analysis.

e We design practical processing techniques to extract stay points and home locations of users
from raw MFR data. Our solution serves as a generic pipeline to robustly derive location
information from flow-level cellular data for mobility-related studies.

e We adapt the general trade area analysis framework to incorporate MFR and conduct urban-
scale analysis on an MFR dataset. Experiments show that CellTradeMap profiles trade areas
that are explainable by prior knowledge, reveals the important metrics for commercial at-
tractiveness, and improves the predictive accuracy of the conventional trade area model
with the help of L'-norm and MFR-based metrics.

A preliminary version of CellTradeMap has been presented in Reference [38]. We extend it in
the following aspects:

e We evaluate the performance of CellTradeMap on a new dataset (Section 7), which covers
1.8 million mobile phone users in 48 days. The results further show that CellTradeMap can
delineate and model trade areas effectively.

e We compare the results of two different cities and find that some attractive metrics are
consistent in different cities and some differ (Section 7.3).

e We compare MFR with Call Detail Records (CDR) (Section 3.1) and check-in data (Sec-
tion 7.4), which are widely used in previous work [23, 28, 31]. The results show that MFRs
are more suitable to analyze customers’ behaviors.

In the rest of this article, we review related work in Section 2; introduce our dataset and Cell-
TradeMap framework in Section 3; present the details of the three modules of CellTradeMap in
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Section 4, Section 5 and Section 6; and evaluate its performance in Section 7. Finally, we conclude
this article in Section 8.

2 RELATED WORK

Our work is inspired by the emerging trend on urban sensing with cellular networks, with a focus
on trade area analysis. We review the most relevant studies below.

2.1 Urban Sensing with Cellular Networks

High user penetration and large spatial coverage make cellular networks an ideal data source for
large-scale and comprehensive urban sensing [4, 20, 35, 36]. Different types of cellular data for
various applications has been exploited in previous studies.

Aggregated traffic data have been studied to monitor and manage urban cellular traffic. Ferrari
et al. [12] partition the urban area into grids and agglomerate cellular usage data in each grid to
detect events in city. Wang et al. [30] study at cellular tower level to predict future traffic in the
city.

CDR is another type of cellular data that records a timestamp and the connected tower ID when
a phone call is made. It contains information about users’ location and has been used to study the
fundamental laws of human mobility [13, 27, 28]. Reference [34] combines CDR data and public
transit data to infer human mobility patterns more accurately.

MFR are sampled whenever mobile phones accesses the cellular network, which contains much
more detailed information than CDR. Several previous works use MFR for fine-grained traffic char-
acterization [29] and mobility modeling [19, 37]. Our work is the first to devise techniques for MFR
to infer the locations of residence and visits to commercial districts for trade area analysis.

2.2 Trade Area Analysis

Trade area analysis studies questions such as “How long distance did people travel” and “What
factors attract customers” to a store or a commercial district. Understading these questions can help
with city planning and market management [24]. To do trade area analysis, researchers need to
estimate the number of visitation to stores or commercial districts. Traditionally, this information
is collected by surveys [10, 21].

User check-ins on social networks emerge as a low-cost alternative to estimate the number of
visitation [17, 23, 31]. Wang et al. [23] characterize where the customers of four popular stores
come from exploiting check-in data of the four stores in New York City. Wang et al. [31] highlight
the effects of different customer sample sets on trade area analysis by investigating check-in data of
five major commercial districts in Beijing, China. However, check-in data suffers from the sparsity
and bias problems [23], making them unfit for comprehensive trade area analysis at the district
level. This also limits their ability to quantify the metrics’ impact on trade areas.

We conduct trade area analysis with MFRs, which have wider spatial coverage and finer tempo-
ral resolution than check-ins, and design processing techniques dedicated to extract robust location
information from MFRs.

3 OVERVIEW

This section presents our mobile flow record dataset and the overall framework of CellTradeMap.

3.1 Mobile Flow Record Dataset

MFRs are fine-grained logs of cellular networks. Each MFR consists of a user ID, a timestamp, the
base station ID, the application sending this packet, the host and the Uniform Resource Identifier
(URI) of the request, as well as other flow information like upload/download bytes (02r/r2o0 in
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Table 1. Example of Mobile Flow Record

User | Time | Station Host URI o2r Bytes | r2o Bytes
usery h St www.example.com | /index/... 614 418
Table 2. Dataset Statistics
D1 D2
# Records 1.7 x 1010 8 x 10°
# Cell towers 2.1 %10 1.2 x 10*
# Covered users 3.5 X 10° 1.8 x 10°
Covered area 1.1 x 10* km? 1.3 X 10* km?
Covered period  June 6-18,2016 Dec. 19, 2016-Feb. 4, 2017
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Fig. 2. Compare CDR and MFR on (a) temporal granularity, (b) spatial granularity, and (c) the number of
daily records per user. MFR has much finer temporal granularity, slightly finer spatial granularity, and more
records per user per day. The CDF of MFR is based on D7 and the CDF of CDR is based on a CDR dataset

(©

that covers 4.4 x 10° users in 27 days.

Table 1). We use two MFR datasets (D1 and D2) to evaluate the performance of CellTradeMap.
They are from two different cities in China, and both cover a broad area and a large population.
Their statistics are summarized in Table 2.

The MFR datasets cover a wide spatial range and have a high time resolution. In comparison,
the check-in dataset used in Reference [23] only contain data for four stores in New York City
(around 100 check-ins for each store). The average number of records per user per day of our MFR
data is 694, and the average interval is shorter than 4 minutes. In contrast, the average number of
check-ins per user per day in Reference [23] is only 0.1.

Compared to CDR, which is commonly used in previous works (Section 2.1), MFR has much
finer temporal granularity and more records. We compare MFR and CDR in Figure 2:

e Figure 2(a) compares the temporal granularity of MFR and CDR by the CDF of the inter-
record intervals. Most intervals of MFR are shorter than several minutes, while the inter-
record interval of CDR can be as long as several hours. As shown in Figure 2(a), nearly all
consecutive MFRs are within 10° s (about 17 minutes). For CDR, there are over one-fourth
of inter-record intervals that are longer than 10* s (about 3 hours).

Figure 2(b) shows the CDF of the distance between consecutive distinct location records.
The spatial granularity of CDR is close to that of MFR, because it is mainly decided by the
density of base stations. The slightly coarser spatial granularity of CDR may be due to the

long inter-record intervals.
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Fig. 3. Overview of CellTradeMap.

e Figure 2(c) is the CDF of the number of daily records per user. Of all users, 95% have less
than 1 call detail record per day, while most users have hundreds of mobile flow records in
one day on average. This limits the capacity of CDR to characterize users’ daily activities
like visiting commercial districts.

The high user penetration and fine temporal granularity make MFR ideal to survey users’ visits to
commercial districts and their places of residence, which are the basis for the trade area analysis.

Together with other data sources such as Points of Interest (POIs), MFRs hold potential to com-
prehensively analyze the trade areas for commercial districts in the entire city.

3.2 CellTradeMap Framework

CellTradeMap is a new pipeline to characterize and predict the trade areas for commercial districts
with MFRs. It consists of three major functional modules (see Figure 3).

e MEFR Processing. In this module, we extract stay points and durations from mobile phone
users’ raw MFRs. Recent proposals exploit check-ins from social media to count visita-
tions [17], but such data are prone to sparsity and bias [23]. Techniques to extract stay
points from GPS traces [39, 40] cannot be applied to MFRs because of MFRs’ unique charac-
teristics (Section 4.1). We design a novel processing pipeline, including switch rectification,
burst separation, and stay points extraction, to robustly extract location and visitation in-
formation from MFRs in Section 4.

e Trade Area Delineation. This module visualizes the trade areas, e.g., with contour maps
of visit probabilities (see Figure 1(b)). We harness POI clustering to identify commercial
districts, infer home locations of visitors based on spatiotemporal patterns of MFRs, and
estimate visit probabilities to commercial districts (Section 5). We also explain the different
patterns of trade areas (Section 7.2.2).

e Trade Area Modeling. This module associates contexts such as the attractiveness of a
commercial district to its visit probability. The Huff gravity model [14] is widely used to
predict the trade area of commercial districts. However, there is no consensus on a unified
definition of the attractiveness. We extract new metrics from MFRs and POIs to quantify
the attractiveness, evaluate each metric’s contribution to attractiveness, and improve the
accuracy of the original Huff model (Section 6).

In the next three sections, we detail each of the three functional modules in sequel.

4 MOBILE FLOW RECORD PROCESSING

This section presents the pipeline to robustly extract stay points of mobile phone users from MFRs.
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Fig. 4. ((a) and (b)) Switches to (a) a remote base station and (b) a nearby base station. The green (bigger)
dots are the user’s connected stations at the corresponding time, and the gray (smaller) dots are all stations
nearby. (c): Bursty sampling of MFRs. Points on each horizontal line represent the occurrences of one user’s
MFRs. One of User 6’s bursts is zoomed in at the top.

4.1 Challenges

4.1.1 Frequent Base Station Switches. MFRs are expected to approximate users’ location by the
connected base station’s location. In practice, the phone is not always connected to the nearest base
station because of the overlap of base stations’ service areas [22]. Sometimes a phone may suddenly
connect to a remote base station, exchange several packets, and switch back within a short time.
Figure 4(a) shows one example of such base station switches. The user’s phone switches to a base
station nearly 6 km away and then back to a nearby base station within 10 s.

Even when a user stays at the same place, his/her phone may switch among base stations nearby
(Figure 4(b)). Consequently, it is difficult to decide whether a user is actually moving or still.

4.1.2  Bursty Sampling. Bursty sampling is another characteristic of MFRs. Mobile phone users
usually access cellular network in a bursty and intermittent manner [16], i.e., heavy data traffic
within a short interval. For example, activities like watching online videos consume traffic inten-
sively and continuously, causing a lot MFRs in a short time.

Figure 4(c) illustrates the bursty sampling of MFRs. Points on each horizontal line represent
the occurrences of a user’s records in one day. Point (¢, user;) means user; has a record at time ¢.
Most users have one or two intervals of dense records separated by hours of blank, except for user
3, who seems to be a heavy mobile phone user. One of User 6’s “bursts” is zoomed in at the top
of Figure 4(c). The records are sampled at a high frequency (from 0 times/min to 86 times/min,
7 times/min on average). The bursty sampling causes redundancy in the dense intervals and leads
to sparsity during blank intervals.

4.2 Base Station Switch Rectification

This subsection deals with the base station switch problem in MFRs. We treat switches to remote
stations and switches to nearby stations differently.

4.2.1 Switches to Remote Stations. Switches to remote stations can cause wrong location
records in MFRs (Figure 4(a)). We first sort each user’s MFRs by time and extract a sequence
{p; =< location, timestamp >=< p;.loc, p;. T >}, where p;.loc is the location of the base station
that the phone connects to. Like Reference [32], dealing with station switch in CDR, we take a
record p; as a remote station switch if:

Dist(pi—1.loc, p;.loc) > Dypise

1
pi-T —pi—1.T < ATypise, ( )
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Fig. 5. Cumulative Distribution Function of (a) distance between users and their connected base stations,
(b) return time (the interval between users’ leaving and coming back to the same place), and (c) station
switch range during stay.

where Dist is the Euclidian distance function. We do not use a speed threshold directly, because
nearby switches can also cause high speed as shown in Figure 4(b).

We set the threshold D,;s. by analyzing the URI in MFRs (see Table 1). We observe that some
location-based services embed users’ GPS in the request URI, which can be seen as the actual
locations of users. Figure 5(a) shows the distance between users and their connected stations based
on these records. For over 90% samples, the distance is below 1.8 km, so we set D55, to 2 X 1.8 =
3.6km. Considering the speed limit of a highway is 120 km/h in China, we set the time threshold
AT, pise t0 3.6/120 X 3600 = 108s.

4.2.2 Switches to Nearby Stations. Nearby base station switches do not incur obviously wrong
location records and can be considered as normal fluctuations of cellular localization. We propose
techniques to extract stay points that are robust to variations of locations caused by nearby base
station switches in Section 4.4.

4.3 Burst Separation

To handle the uneven sampling of MFRs, we divide the sequence of MFR logs of a user into multiple
bursty intervals and sparse intervals and process them differently when extracting stay points and
durations (see Section 4.4).

A bursty interval is defined as I, =< py, pa, . .., pp >, Where

Pn T —p1.T > ATy

2
Pis1: T = pi.T < ATpyrsry (i=1,2...n-1). @

Each interval between two neighbouring bursty intervals is a sparse interval (denoted by I).

To set ATpyrsty, We consider that it should give a high probability that a user stays at the exact
place during ATy, sy interval. Assume the gap between two consecutive records are AT and the
two records are generated at the same cellular tower. When AT is small enough (AT < ATpyrsty),
the user is very likely to stay near the cellular tower during this interval (AT). Otherwise, the user
may have gone to another place and then come back. To determine the value of ATy, 5y, we draw
the distribution of the time between mobile phone users’ two visits to the same location (return

time). A return is identified by the following:
<p1,P2"~api7~--,Pn > 3)
s.t. p1.loc = py,.loc, Dist(p1, pi) > Dnoise- (

Then return timeis p,.T — p;.T. Based on Figure 5(b), return timeis over 1.7 hours for 90% of cases.
For two successive records whose gap is shorter than 1.7 hours, we can infer that the user does
not visit other places confidently. So ATy is set to 1.7 hours. In Section 4.4, we will discuss the
value of another threshold ATy, 4y.
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In the inset of Figure 4(c), more than 82% of records are within 5 s after their predecessors. This
means that the MFRs inside a bursty interval can be rather redundant. Most of records inside bursty
interval can be discarded to accelerate data processing without losing information. Based on these
observations, if a record is less than 10 s after the last record, then it is considered redundant and
removed. As a result, 69% of records are filtered out.

4.4 Stay Point Extraction

Based on MFR, we extract users stay points and then infer their homes and visits to commercial
districts. When a mobile phone user stays in the neighbourhood for some time longer than a
threshold, we call it a stay point. Stay points are a more robust way to represent users’ location
than raw location information directly from MFR, since phones can switch among nearby cellular
towers even when they donot move. Stay points can also indicate semantic meanings about users’
activities, such as visiting commercial districts and resting at home [39, 40].

We determine stay points as follows. First, we split a user’s MFRs into bursty intervals ({1 }) and
sparse intervals ({I;}) as Section 4.1.2. Then stay points are extracted from each bursty interval
Iy =< p1,pas- .., pn >. We define the neighbourhood of a record p; as a circle centered at p;.loc
with radius Dp,pp,.

Specifically, we first find the continuous records when a user stays in p;’s neighbourhood, i.e.,

<PssevesPisesPe >

s.t. Dist(pj.loc,p;.loc) <= Dppp Vs < j<e
Dist(ps—1.loc, pi.loc) > Dppp
Dist(pe+1.loc, pi.loc) > Dypp.

4)

Then the time the user spends in p;’s neighbourhood is p;.st = p..T — ps.T. We select p; with the
maximum p;.st as pPmax- If pmax.st > ATzqy, then we extract a stay point sp = (loc, arvT, levT):

sp.loc = doc/(e—s+1
p kZ:‘:pk ( ) 6

sp.arvT = ps. T sp.levT = p,.T,

where sp.loc is the center of the stay point and sp.arvT and sp.levT are the arrival and leaving
time of sp, respectively.

After removing Is) =< ps, ..., Pmax; - - - »Pe > from I, we update each remaining record’s p;.st
that are affected by the removal of I;,. Then we repeat the above process to find other stay points
until the maximum p;.st is shorter than ATy .

For sparse intervals, we only extract stay points at night and abandon the records at daytime.
Note that the time between two records in sparse intervals can be larger than ATy,,,5;y, = 1.7 hours,
during which a return may occur (Figure 5(b)). But if the sparse interval is at night, then it is highly
likely that consecutive records with the same location is a stay. This will help us extract home
locations robustly.

The threshold AT, is the minimum time length of a stay. We set it to 20 min, because it suffices
to qualify as a visit to commercial districts. Bursty intervals shorter than AT;;4, will not contain
stay points, so AT;qy is also used in Section 4.1.2 as the minimum length of bursty intervals.

We set the other threshold D,,;;, by analyzing users’ distribution of connected stations during
stay. For GPS trajectories, D,p; can be set manually to an appropriate value (200 m [40]). But
for MFRs, due to the low spatial granularity and nearby station switches, the fluctuation range
of connected stations is different from the range of users’ wandering. From the records with GPS
values (Section 4.2), we extract over 10 thousand stay points by the method in Reference [40]. The
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Fig. 6. Example of clustered stay points. Each circle is a stay point of the user. The area of a circle is propor-
tional to its stay time at night. The color of the circle represents the cluster it belongs to.

distribution of station fluctuation range is shown in Figure 5(c). As is shown, about 60% stay points
only have one station due to the low spatial granularity. Also, users’ wandering can cause several
kilometers of station fluctuation, and 90% of them are below 1.763 km. So D,,}, is set to 1.763 km.

5 TRADE AREA DELINEATION

Based on the stay points extracted in Section 4.4, we infer the commercial districts’ trade ar-
eas. First, we cluster Points of Interests (POI) to identify commercial districts automatically (Sec-
tion 5.1), and then we infer the probabilities that residents visit each commercial district (Sec-
tion 5.3), based on which we can quantify the trade areas.

5.1 Commercial District Identification

To find the commercial districts automatically, we adopt the method in Reference [33]. We consider
the POIs with annotations of commercial districts and shopping malls. First, the algorithm selects
some seeds as the initial cluster centers and then assigns other POIs to their closest cluster unless
the distance is greater than a threshold. By selecting a proper threshold (evaluated by the Silhouette
Coefficient [26]), we obtain 52 commercial districts in the city of D1 and 33 in D2.

5.2 Home Location Inference

In previous studies, researchers find that human mobility exhibits high regularity [13, 27], and
human activities are usually centered around a few locations like home and work places [15]. To
infer the probabilities that the residents in an area visit a commercial district, we first need to
identify users’ place of residence. We represent a user’s stay points as {sp1, spz, . .., Spn}. After
clustering with DBSCAN [11] (epsilon set to 500 m and minimum samples set to 1), we find m
clusters {cy, co, . . ., ¢ }. For each cluster ¢;:

cj.st = Z (sp.levT — sp.arvT)
spec;

(6)

¢;.loc = Z sp.loc X (sp.levT — sp.arvT)/c;.st,

spec;

where c;.st is the total stay time of the stay points in this cluster and c;.loc is the weighted centroid
of stay points based on their stay time. Then, we take the place where users stay most at night
(20:00 to 8:00) as the users’ home. Figure 6 shows the clusters of a user’s stay points, and the
identified home is also marked. The stay points gather at a few key locations, and the stay time at
night of the home cluster is significantly larger than other clusters.
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5.3 Visit Probability Estimation

First, we partition the city into 1km X 1km grids (30km X 30km totally). Then we infer the prob-
abilities that people in each grid area visit each commercial district. If a user pays a visit to a
commercial district between 18:00 and 23:00 on weekdays or 9:00 and 23:00 at weekends, which
is the most common shopping time, then it is counted as one visit to the commercial district. The
visits are identified based on users’ stay points, and thus we can exclude the people that just pass
by a commercial district. Besides, we take the place where users spend the most time at daytime
(8:00 to 20:00) as their work locations, and then we exclude the people working near a commercial
district when counting the number of visits to this commercial district. P;; is the probability that
residents in area i visit commercial district j. It is calculated as P;; = C;;/ Zlk\];l Cik, where Cjj is the
total number of visits from area i to district j and N; is the total number of commercial districts.
We admit that we are not able to differentiate people actually purchasing something from people
purchasing nothing. The people visiting a commercial district without purchasing anything are
potential customers for the commercial district. So understanding their behaviors is also benefi-
cial to promote business profits.

6 TRADE AREA MODELING

This section investigates the impacting factors on trade areas of commercial districts based on the
Huff model.

6.1 Basics on Huff Model

The Huff model [14] has been widely used for evaluating business geographic decisions, includ-
ing defining and analyzing trade areas. It models the visit probabilities from residential areas to
commercial districts as below:

Uij
Zlk\]il Uik
where P;; is the probability that residents in area i visit commercial district j, N; is the number of
commercial districts, and Uj; is the utility of commercial district j to area i. Specifically,

H
A
Uij = (1_[ AZI})DU’ 3)
h=1

where Ay; is the hth metric of the attractiveness of commercial district j and yj, is the sensitivity
parameter of P;; to Ay;. D;; is the distance (travel time) between area i and commercial district j
with a negative sensitivity parameter A to depict the distance decay effect.

We have calculated P;; from MFRs in Section 5.3. The travel time D;; can also be easily ob-
tained via map services such as the Baidu Map API [1]. Below we describe how to determine the
attractiveness Ap; and the sensitivity parameters.

Pij = (7)

6.2 Attractiveness Determination

The area is usually used to quantify attractiveness in previous works [31], while a consensus on
the definition of attractiveness is currently absent. In this article, we design various metrics from
three categories of metrics to quantify the attractiveness of a commercial district to improve the
accuracy of the Huff model.

6.2.1 Commercial Entity Metrics. The amounts and diversity of commercial entities in a district
are important metrics that affect the attractiveness. For commercial district j, the numbers of shop-
ping POIs (m;), restaurant POIs (m,), and entertaining POIs (m3) are counted as the commercial

ACM Transactions on Sensor Networks, Vol. 16, No. 4, Article 42. Publication date: September 2020.



42:12 Y. Zhao et al.

entity metrics. To assess the diversity of entities, entropy measure (m4) from information theory
is applied to the frequency of commercial POI types.

6.2.2  Urban Facility Metrics. The attractiveness of a commercial district is related not only to
commercial POIs but also others like parking lots (ms), scenic spots (1ms), bus stations (m7), subway
stations (mg), and life services (my). They reflect the transportation accessibility and the services
a district can provide. The numbers of these POIs are collected as the urban facility metrics.

6.2.3 Human Metrics. The population density and the incoming flow may have an impact on
the trade area of a commercial district. Based on the locations of homes inferred from MFRs, we can
estimate the population of an area. The population densities in the 5 km (mg), 5- to 10-km (my;),
and 10- to 15-km (m;2) ranges around a commercial district are extracted. From MFR, we also get
the incoming flow (m3) for each commercial district, which excludes the residents in the commer-
cial district.

6.3 Huff Model Fitting
Substitute Equation (8) into Equation (7), we get

H  AYh\pA
(thlAh;})Dij

Pij=—x . )
i H Y A
Zk:l( h=1 Ahillc)Dik
Applying the following transformation, Equation (9) can be transformed into a linear form:
Py\ _ < Apj Dy;
log(T)= yhlogT+/110gT=W-E
P; hz_; Ap i
W= (y1,....YH.A) (10)
A A D::\T
E= (log#,...,logﬂ,log4) s
Al AH Di

where ﬁi, A~h, and ﬁi are, respectively, the geometric mean of P;j, Apj, and D;; over all commercial
districts that residents in area i visited.
To automatically select the more relevant metrics of attractiveness, we apply L'-norm to the
solution of Equation (10):
2
} ; (11)
2

where n is the number of samples and f is the weight of L'-norm. It has been shown that L!-norm
can bring sparsity to solutions that can be used to select effective metrics [33].

Once we obtain the value of W, we can analyze how much each metric contributes to the trade
area of a commercial district (evaluated in Section 7.3.1) and predict the trade areas of other com-
mercial districts (evaluated in Section 7.3.2).

(3]
og|=—|-W-E

i

N 1
W = i Wi + —
arng]mn {ﬂll 1 o

7 EVALUATION

This section presents the evaluations of CellTradeMap. Due to the lack of ground truth on the
actual locations of mobile phone users, it is difficult to evaluate the accuracy of the MFR processing
module. Hence we mainly assess the performance of CellTradeMap on trade area delineation and
modeling.
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Fig. 7. Correlation between the number of residents inferred by CellTradeMap and that by census for each
administrative district ((a): D1, (b): D2).

7.1 Experimental Settings

We use the same MFR dataset as in Section 3.1. The POI data are from Baidu Map API [1].

We store the MFR dataset in a Greenplum [6] database, an open-source data platform for mas-
sively parallel processing. We use d3.js [7] and mapbox [8] to visualize trade areas. The remaining
parts of the system are implemented in python, and the experiments are run on a CentOS server
with Xeon E5 processor and 256 GB memory. The sampled data and code are available upon request
to the corresponding author.

7.2 Performance of Trade Area Delineation

In this series of experiments, we evaluate the accuracy of CellTradeMap on home location infer-
ence and analyze the trade areas extracted from MFRs.

7.2.1  Accuracy of Home Location Inference. In this experiment, we compare the distribution
of homes inferred by CellTradeMap with the census data published by the government for each
administrative district. We evaluate the accuracy at the administrative district level rather than for
each individual, because we do not have access to the home information of each individual mobile
phone user. To get robust results, we only use the users who have more than 4(20) days’ records
in D1(D2).

For D1, Figure 7(a) plots the population of residents in each administrative district estimated by
CellTradeMap (i.e., whose homes are located in the district) and that obtained from governmental
census data. We observe a strong linear correlation (r = 0.90) between the estimated population
and the actual population in each administrative district. The only two outliers are district A, a
suburban area, and district B, where the government resides. The deviation of these two points
may be due to urbanization. The linear correlation implies almost unbiased sampling of residents
among different administrative districts. The results of D2 are shown in Figure 7(b). The inferred
population is linearly related to the census data except for a few outliers (r = 0.75).

7.2.2  Visualization of Trade Areas. In this experiment, we calculate the visit probabilities of
residents to each commercial district, and plot the (i) contour maps of visit probabilities and
(ii) heatmaps of visitors to get insights on the trade areas.

Figure 8 and Figure 10(a) and (b) show representative contour maps of visit probabilities in D1
and D2. First, we calculate the visit probabilities from grids to commercial districts as in Section 5.3,
then we take these probabilities as the samples at the center of each grid, and, finally, we get
the contour lines based on these samples [3]. In these figures, the color of an area indicates the
probability that residents in this area visit a specific commercial district.
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Fig. 8. Contour maps of visit probabilities in D1. Circle nodes represent the center of commercial districts.
The color of an area reflects the probability that residents in this area visit a specific commercial district. The
probability is calculated in Section 5.3. (a) The trade area of 1is squeezed in the south due to the competition
from districts 2 and 3 but stretched in the north due to the east-west road. (b) There is no competition for
this commercial district. The trade area extends nearly uniformly except for the stretch along the east—west
road. (c) The extension of the trade area to the south is blocked by a river. (d) The trade area of district 1 is
much larger than that of district 2 due to the different attractiveness of the two districts.

We obtain the following insights from the different patterns of trade areas.

(1) The competition from nearby commercial districts can compress the trade area. For exam-
ple, in Figure 8(a), the trade area of commercial district 1 is squeezed by the competition
with districts 2 and 3, which means that the market share of commercial district 1 in the
central area is decreased. In Figure 10(a), the trade area is squeezed horizontally by the
competition from nearby competitors.

(2) The road network is another reason for the anisotropy of the trade area. In Figure &(b),
due to the east-west road passing by, the trade area elongates along the road. Except for
this, the trade area extends almost evenly, because there are no other commercial districts
nearby.

(3) Natural barriers like rivers can cut off the spread of the trade area. As shown in Figure 8(c),
ariver lying in the south blocks the residents on the south bank to visit the commercial dis-
trict on the north bank, whose trade area spread much further to the north. In Figure 10(b),
the extension of trade area to the southeast is also blocked by a river.

(4) The attractiveness may lead to different sizes of trade areas. As shown in Figure 8(d), the
two closely located commercial districts have different sizes of trade areas.

Figure 9, Figure 10(c), and Figure 10(d) show heatmaps of commercial districts’ visitors in D1
and D2. The intensity of color represents the number of visitors from this area.

(1) In Figure 9(a), locations A and B are two major sources of visitors for the commercial
district, but the market shares at these two locations differ, 28% at A and 12% at B.
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Fig. 9. Heatmaps showing the distribution of visitors’ homes in D1. Circle nodes represent the center of
commercial districts. The intensity of red represents the absolute number of visits from a location. (a) A and
B are both major sources of visitors, but the visit probabilities for residents in A and B to visit this commercial
district are different. Panels (b), (c), and (d) illustrate the same three commercial districts with Figure 8(a).
Panels (b), (c), and (d) show the distribution of visitors of commercial districts 1, 2, and 3, respectively.

’
» |
- ‘ : .
(o) (d)

Fig. 10. D2:((a) and (b)) Contour maps of visit probabilities. ((c) and (d)) Heatmaps showing the distribution
of visitors’ homes who have visited the commercial district at the center of the figure. (a) The trade area
is squeezed horizontally by the competition from nearby competitors. (b) The extension of trade area to
the southeast is blocked by a river. (c) Most visitors come from the left of the commercial district. (d) The
commercial district at the center attracts visitors from a broad area.
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Fig. 11. The top eight attractiveness metrics with high sensitivities. The error bar is the variance over five-
fold cross-validation. Densities 1, 2, and 3 are the population densities in the 5-km, 5- to10-km, and 10- to
15-km ranges around a commercial district, respectively. ((a): D1, (b): D2).

(2) Figure 9(b), (c), and (d) illustrate the distribution of visitors for the three commercial dis-
tricts in Figure (a). We find that the middle area among the three commercial districts is
a major source of visitors for all the three districts, although the visit probability to each
district is relatively low due to the competition. Such areas with low market share and
large volume of visitors should be the focus of business managers.

(3) The visitors in Figure 10(c) mostly come from the left of the commercial district, while the
visitors in Figure 10(d) come from a much broader area.

7.3 Performance of Trade Area Modeling

In this series of experiments, we identify the key metrics of attractiveness and assess the accuracy
of the Huff model fitted by CellTradeMap to predict the trade areas of other commercial districts
using fivefold cross validation. Specifically, the commercial districts are divided randomly and
evenly into five groups. In each round of cross validation, one group is used for testing and the
other four are used for training.

7.3.1  Sensitivity Analysis of Attractiveness Metrics. In this experiment, the sensitivity parame-
ters y1,¥2, ..., yn are solved from Equation (10), and each parameter corresponds to a metric of
attractiveness. The sensitivities are averaged over fivefold cross validation and the metrics with
top sensitivity are shown in Figure 11(a) and Figure 11(b):

(1) In the city of D1, abundant restaurant options and parking lots, and large crowd flows
are critical to the attractiveness of a commercial district. Besides, easy access to public
transportation and having scenic spots are also helpful.

(2) Inthe city of D2, the number of restaurants and crowd flows are key metrics of commercial
attractiveness, while having more shops, life services, and entertainment entities are also

helpful.

The results show that the attractiveness metrics have both similarities and differences in different
cities. Large crowd flows and abundant restaurant choices are key metrics in both cities, while the
other metrics that help improve attractiveness are different. The city of D1 is a famous tourism
city, thus having scenic spots is an important metric. The other dissimilarities may be related to
the different life styles in two cities.

It should also be noted that the ubiquitous coverage of MFR is important for sensitivity analysis.
Figure 12(a) and (b) shows the sensitivity analysis based on five randomly sampled commercial dis-
tricts. Compared to Figure 11(a) and (b), the variances (error bars) are much larger for the sampled
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Fig. 12. The top eight attractiveness metrics obtained from 5 commercial districts. Densities 1, 2, and 3 are
the population densities in the 5-km, 5- to 10-km, and 10- to 15-km range around a commercial district,
respectively. ((a): D1, (b): D2).

Table 3. D1, Average RMSE
on Prediction Accuracy

Table 4. D2, Average RMSE
on Prediction Accuracy

Method RMSE Method RMSE
Linear Regression  0.188 Linear Regression  0.160
Random_5 0.145 Random_5 0.155
L'-norm 0.128 L'-norm 0.148

five districts, which means that sensitivity analysis with a small number of commercial districts
tends to be unreliable.

7.3.2  Predictive Accuracy of Trade Area Model. In this experiment, we utilize the Huff model
fitted using commercial districts in the training set to predict the visit probabilities P;; of commer-
cial districts in the testing set. The accuracy is measured by the root mean square error (RMSE) of
P i J

I J
1 Z Z .
RMSE= ﬁ (Pij—Pij)Z,

i=1 j=1

(12)

where I, J are the numbers of residential areas and commercial districts and PAl- j is the estimated
P, ij-
We compare CellTradeMap with two baselines.

e Linear Regression. Least squares method is used to calibrate the Huff model with all 13 met-
rics.
e Random. Linear Regression with five randomly selected metrics to calibrate the Huff model.

Table 3 and Table 4 summarize the results from fivefold cross validation in D1 and D2. The model
fitted by CellTradeMap yields the best RMSE in both cities. Linear Regression performs the worst,
since too many irrelevant metrics will harm the model’s accuracy. Compared with Random, the
decrease of RMSE implies that with the help of L!-norm, CellTradeMap can improve the accuracy
by selecting the most important attractiveness metrics like Incoming Flow based on MFR.

7.4 Comparison of MFR and Check-in

We do not have check-in data, but we have the application information in MFRs. Weibo is the
application with most check-ins in China. We retrieve all the MFRs of Weibo as a superset of the
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Fig. 13. Compare MFR and Weibo data, which are a superset of check-in data. (a) CDF of the averaged
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Table 5. Correlation Coefficient of
Home Location Inference

Data Correlation coefficient
MFR 0.75
Weibo 0.58

check-in data. We compare MFR and the superset of check-in from four aspects: daily records

per u

perfo

ser, temporal coverage, temporal granularity, and home inference. We do not compare their
rmance in trade area analysis directly due to the lack of ground truth.

Daily records per user: Figure 13(a) shows the CDF of the averaged number of records
per user per day. Most users have less than 10 Weibo records per day, and a part of these
records correspond to users’ check-in. The network traffic of Weibo is only a part of the
overall traffic logged by MFR, not to mention the check-in data. So it is reasonable that
there are much more MFRs than check-ins.

Temporal coverage: In Section 4.1.2, we discussed the redundancy in MFR. So more data
do not necessarily provide more information about users’ locations. We segment one day
into 48 intervals uniformly. Then, we count the number of intervals that MFR and Weibo
data cover. The temporal coverage is defined as follows:

# of intervals covered
48 ’

temporal_coverage =

The results are shown in Figure 13(b). For most users, Weibo data cover a very small fraction
of their daily activities (less than 5%). However, MFRs cover a much larger fraction, which
makes MFRs more suitable to analyze users’ home locations and shopping activities.
Temporal granularity: Figure 13(c) shows the CDF of inter-record intervals. Most inter-
vals of MFR are shorter than 10% s (about 17 min), while many consecutive Weibo records
are hours apart. The check-in data would be even sparser. This makes check-in data very
easily to miss users’ activities like visiting commercial districts.

Home inference: In Section 7.2.1, we evaluate the accuracy of home location inference by
the correlation analysis between the inferred number of residents and the census data. The
correlation coefficient measures how strong two variables are linearly correlated; thus, it
can indicate the accuracy of home location inference, since we do not have ground truth for
individual home location. For D2, we infer users’ homes with MFR or Weibo data separately
and calculate the pearson correlation coefficient. The results are shown in Table 5. The lower
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coeflicient of Weibo data suggests that Weibo data are biased among different administrative
districts.

Compared to MFR, check-in data are sparse and biased, which makes them unable to support
precise and urban-scale trade area analysis.

8 CONCLUSION AND FUTURE WORK

In this article, we propose CellTradeMap, a novel cellular network-based trade area analysis frame-
work for commercial districts. We devise processing techniques to extract robust location infor-
mation from flow-level cellular data and design analytical methods to adapt the conventional trade
area analysis workflow to integrate cellular data. We evaluate the performance of CellTradeMap
on trade area delineation and modeling using an urban-scale cellular network dataset covering
3.5 million mobile phone users. Experimental results show that CellTradeMap is able to extract
explainable trade areas, identify important attractiveness metrics, and predict trade areas of an
unseen commercial district with high accuracy. We envision our work as a pilot study to unlock
the full business potentials of big cellular data analysis.

Looking forward, we will investigate the practical deployment of CellTradeMap. For example,
how many records do we need to achieve reliable results and how can we determine the tradeoff
between the data coverage and the system overhead? Another important direction is the general-
ization of the results of CellTradeMap, i.e., whether the results based on the data of one city can
be generalized to other cities.
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