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Abstract: The  integration  of  embodied  intelligence  into  physical  environments  marks  a  new  frontier  in  the

evolution of intelligent systems. While the Internet of Things (IoT) connects devices and Artificial Intelligence of

Things  (AIoT)  embeds  intelligence  into  them,  we  argue  that  a  further  conceptual  leap  is  required—one  that

enables  the  composition  of  intelligence  itself  through  real-world  embodiment,  interaction,  and  evolution.  We

introduce the paradigm of Embodied Intelligence of Things (EIoT) as a foundational framework for distributed,

physically  grounded  intelligent  systems.  EIoT  systems  are  structured  across  three  essential  dimensions:

Enacted,  where  devices  are  transformed  into  embodied  agents; Engaged,  where  agents  interact

opportunistically based on physical and contextual constraints; and Evolutionary, where intelligence adapts and

self-organizes through continuous experience. We further outline a developmental trajectory for EIoT based on

the openness of perception and decision spaces, providing a conceptual map from tightly constrained agents to

fully  autonomous  and  adaptive  systems.  This  work  aims  to  establish  EIoT  as  a  core  architectural  and

theoretical direction for future embodied intelligent systems.

Key words:  embodied  intelligence  of  things; compositional  intelligence; multi-agent  coordination; edge

intelligence; physical–digital interaction

1　Introduction

The  advent  of  deep  learning  and  Large  Language
Models  (LLMs)  has  propelled  Artificial  Intelligence
(AI)  technology  into  a  new  phase,  demonstrating  the
potential  to  help  human  beings  with  scientific
understanding  and  cognitive  abilities.  Mario  Krenn
et  al.[1] mapped  out  three  dimensions  in  which  AI
assists  humans  in  scientific  understanding:  the
Computational Microscope, the Resource of Inspiration
and  the  Agent  of  Understanding.  Numerous  examples
of the first two dimensions have already been observed,
including  the  prediction  and  design  of  protein

structures[2],  the  accurate  forecasting  of  weather
changes[3],  and  the  control  of  nuclear  fusion  reactions
using AI technology[4].  The third dimension, however,
would  require  AI  agents  to  be  able  to  automatically
acquire scientific understanding and transfer insights to
humans. In order to achieve this, it is necessary for the
AI  agents  to  possess  a  physical  form and the  capacity
to  interact  directly  with  the  physical  world.  For
example,  an  LLM that  displays  a  text  message  saying
“introduce  reagents  into  a  container” does  not  really
complete  the  experiment.  The  same  is  true  of  an  AI
agent  trying  to  analyze  and  draw  conclusions  without
doing  field  observations.  It  is  thus  hypothesized  that
the  capacity  for  direct  interaction  with  the  physical
world is a pivotal  element in the subsequent evolution
of AI, which is also considered to be a prerequisite for
the  actualization  of  Artificial  General  Intelligence
(AGI).

Indeed, as far back as 1950, Turing[5] had envisioned
such  a  route  when  he  proposed  the  equipping  of  AI
agents  with  sense  organs  and  the  training  of  AIs  as  if
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they  were  human  children.  Many  different  types  of
embodied  agents  have  been  proposed,  such  as
humanoid  robots[6] and  quadrupedal  robots[7].  There
have  also  been  studies  on  Multi-agents  systems,  such
as  UAV  swarms[8].  Much  progress  has  been  made  in
the  above  studies,  but  only  some  of  the  embodied
intelligence  scenarios  have  been  covered.  As  we  all
know, most of current AI models are trained with data
from  the  Internet,  and  with  the  development  of  IoT
technology[9],  the  Internet  has  been  largely  extended
from  connecting  human  users  to  connecting  ordinary
objects  in  the  physical  world.  As  a  result,  we  observe
that a large number of ordinary objects in the physical
world  have  been  able  to  sense,  establish  connections,
and  even  have  certain  computational  capabilities.
These objects are usually interconnected and constitute
systems,  even  a  system of  systems.  An  example  is  an
intelligent factory in which there are a large number of
sensors, actuators, computing devices, etc. In this case,
each  object  can  be  an  embodied  agent,  while  they  are
constantly  exchanging  information  with  other  objects
through  different  connections,  interacting  with  the
external environment and humans as a whole. We refer
to  such  systems  as  Embodied  Intelligence  of  Things
(EIoT), which we believe will be an important research
direction for Embodied Intelligence.

We define EIoT as a new class of intelligent systems
that  emerge  from  the  convergence  of  AI,  IoT,  and
embodiment.  These  systems  consist  of  physically
grounded  agents  that  are  capable  of  perception,
decision-making,  and  interaction—both  with  the
environment  and  with  each  other.  The  defining
characteristics of EIoT can be understood through three
foundational  domains,  namely  Enacted,  Engaged,  and
Evolutionary. First, devices are enacted, meaning they
become  autonomous  agents  through  the  integration  of
sensing,  actuation,  and  real-world  interaction.
Intelligence  is  realized  not  through  preprogrammed
rules,  but  through  embodied  perception–action  loops.
Second,  agents  are engaged—they  form  peer-to-peer,
opportunistic  interactions  based  on  spatial  and
temporal  constraints.  EIoT  interactions  are  typically
decentralized,  event-driven,  and  context-dependent,
contrasting  sharply  with  the  persistent  connectivity
model  of  traditional  IoT.  Third,  EIoT  systems  are
fundamentally evolutionary:  they  learn  and  adapt
continuously  through  feedback,  accumulating
experience  to  refine  behaviors,  develop  modular
capabilities,  and  support  scalable  compositional

intelligence.
Together, these three domains represent a shift  from

connecting  things  (IoT),  to  making  them  intelligent
(AIoT),  to  enabling  the  composition  of  embodied
intelligence  (EIoT).  While  progress  has  been  made
across all  three layers[9−12],  EIoT remains an emerging
and  largely  underexplored  field,  with  numerous  open
challenges  related  to  architecture,  coordination,
scalability, and evaluation.

The  rest  of  this  paper  is  structured  as  follows:
Sections  2–4  trace  the  conceptual  evolution  from  IoT
to  EIoT  and  elaborate  the  key  enabling  technologies
across  the  three  domains  of  Enacted,  Engaged,  and
Evolutionary.  Section  5  discusses  challenges  and
frontier  issues.  We  present  our  forward-looking
perspective  on  the  developmental  trajectory  of  EIoT
and outlines priorities for future research in Section 6.

2　Enacted Agent

Unlike  conventional  AI  systems  that  operate  within
closed  digital  or  simulated  environments,  EIoT
introduces  the  concept  of agentization—the
transformation  of  physical  devices  or  subsystems  into
intelligent,  embodied  agents.  These  agents  are  not
passive data collectors or remote-controlled endpoints;
rather,  they  actively  sense,  think,  and  act  within  their
local environments, serving as the foundational units of
distributed, embodied intelligence.

Inspired  by  Brooks’s  subsumption  architecture[13],
Enacted  agents  realize  intelligence  through  embodied,
reactive  perception–action  couplings,  where  the
environment  itself  serves  as  the  agent’s  reference
frame.  In  this  context,  each  agent  functions  as  a
digital–physical proxy for a physical entity. It manages
sensor  data,  executes  control  logic,  coordinates  with
other agents, and autonomously adapts to changes in its
environment.  EIoT  agent  architectures  are  similarly
hierarchical,  as  shown  in Fig.  1:  low-level  agents
interface  directly  with  individual  devices,  while  mid-
and  high-level  agents  manage  coordination  across
clusters  or  entire  systems.  This  layered  structure
enables  scalability,  modularity,  and  context-aware
behavior—mirroring  principles  of  biological
organization such as cellular autonomy[14],  tissue-level
coordination[15], and organism-wide coherence[16].

By  replacing  the  notion  of  merely “instrumented”
devices  with  that  of “enacted” agents,  EIoT  pushes
intelligence closer to the physical substrate. Each agent
encapsulates localized intelligence, enabling responsive
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behavior  grounded  in  physical  embodiment.
Collectively,  these  agents  form a  dynamic,  extensible,
and situated system capable of interacting with the real
world in real time.

However,  building  such  hierarchical,  agentized
systems  that  faithfully  represent  and  govern  physical
environments remains a core challenge in EIoT. Unlike
traditional  AI  models  that  process  abstract  data,  EIoT
agents  must  operate  under  real-world  constraints—
dealing  with  uncertainty,  noise,  latency,  and
environmental  variability.  Three  fundamental
challenges  define  this  problem  space: (i)  Accurate
Physical-to-Digital  Mapping:  Agents  must  maintain  a
reliable  and  granular  understanding  of  their  physical
counterparts  through  sensor  fusion  and  environment
modeling. (ii)  Understanding  the  Physical  World:
Agents  must  interpret  physical  signals  and  contextual
cues  using  models  that  can  reason  about  dynamics,
constraints, and interaction affordances. (iii) Real-Time
Closure  of  the  Physical–Digital  Loop:  Agents  must
sustain  a  tight  perception–cognition–action  loop,
responding  to  physical  changes  with  minimal  latency
and maximal fidelity.

The remainder of this section discusses the enabling
technologies  that  support  enacted  agents  in  EIoT
systems.

2.1　Physical-to-digital mapping

Accurate  and  semantically  expressive  mapping
between  the  physical  world  and  its  digital  counterpart
forms  the  foundation  for  effective  operation  of  EIoT
agents.  Achieving  this  requires  embodied  IoT  devices
to  perceive  their  environments  through  rich,
multimodal  sensing,  enabling  them  to  act  as

autonomous, context-aware agents. Recent research has
explored a broad spectrum of sensing modalities, Radio
Frequency  (RF)[17],  acoustic[18],  visual[19],  tactile[20],
and even smart material-based[21]. To push the limits of
spatial  perception,  millimeter-wave  radars  and
reconfigurable metasurfaces[22] have been leveraged to
achieve  near-LiDAR  resolution  RF  imaging  and  non-
line-of-sight  object  detection.  For  instance,  a  rotating
mmWave  array  can  produce  high-fidelity  3D  depth
maps  comparable  to  a  64-beam  LiDAR[23],  while
metasurface  beamformers  can  steer  signals  around
corners  to  see  hidden  targets[24].  Such  RF-based
methods are inherently robust to poor lighting, dust, or
smoke, giving IoT agents “X-ray” vision where optical
sensors fail[23]. Complementing RF, acoustic sensing is
being reinvented for IoT applications: ultra-low-power
acoustic systems like SPiDR[25] use a single transducer
to  emit  and  capture  spatially  coded  ultrasound,
allowing  micro-robots  to  navigate  by  sensing  3D
obstacles  at  minimal  energy  cost.  Innovative  signal
processing[26] can  exploit  hardware  non-linearities  to
boost  acoustic  vibration  sensing  to  sub-millimeter
granularity,  enabling  detection  of  fine  mechanical
movements.  These  advances  in  better  sensing  are
fundamentally  elevating  IoT  devices  from  passive
observers  to  context-aware,  interactive  participants  in
their environment.

2.2　Physical world understanding

Understanding  the  physical  world  remains  a  central
challenge  for  EIoT  agents  tasked  with  interpreting
complex,  noisy,  and  dynamic  sensory  input.  Recent
researches  have  demonstrated  that  Large  Language
Models  can  be  adapted  to  interpret  IoT  sensor  data,
forming  a  new  class  of  applications[27].  AutoIoT[28]

proposed a systematic framework that leverages LLMs
to  synthesize  interpretable  programs  from  natural
language  input,  enabling  agents  to  reason  about  ECG
signals,  IMU  data,  and  mmWave  radar  streams.
Babel[29] addressed  multi-modal  grounding  by  pre-
training  a  scalable  transformer  model  across  sensor
modalities  (vision,  audio,  motion),  enabling  cross-
modal  alignment  and  transfer.  LLMSense[30] extended
this  direction  by  enabling  LLMs  to  reason  over
structured  temporal  data  from  wearable  sensors.
ChatIoT[31] tackled  physical  understanding  from  a
system  integration  standpoint,  proposing  a  security-
aware  LLM  architecture  that  maintains  contextual
memory  across  edge  deployments.  IoT-LM[32]

 

 
Fig. 1    EIoT  agentizes  the  physical  world  into  hierarchical
agent systems.
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introduced  a  foundation  model  pre-trained  on
1.15 million  sensor-language  pairs  across
12 modalities.  With  a  multisensory  multitask  adapter
layer,  IoT-LM  allows  agents  to  fuse  IMU,  visual,
audio,  thermal,  and  spatial  data  into  coherent  high-
order representations.

Together,  these  works  point  to  three  pillars  of
physical  understanding  in  EIoT:  (i)  Grounded
perception  via  sensor-aligned  representations,  (ii)
Semantic  abstraction  through  promptable  reasoning
and  concept  extraction,  and  (iii)  Multi-agent
cooperation enabled by distributed models with shared
context and task-awareness.

2.3　Real-time closure of the physical-digital loop

Achieving  real-time  responsiveness  across  sensing,
inference,  and  actuation  is  essential  for  embodied
agents  operating  in  dynamic  physical  environments.
Central  to  this  requirement  is  Edge  Artificial
Intelligence  (Edge  AI)[33],  which  enables  local,
low-latency  decision-making  by  shifting  computation
from cloud servers to the edge of the network. Over the
past  five  years,  a  large  body  of  work  has  emerged
exploring  system,  model,  and  infrastructure-level
innovations  to  reduce  end-to-end  delay  in
physical–digital loops.

Techniques  like  model  compression,  pruning,  and
hardware  acceleration  now  enable  even  deep  neural
networks  to  run  on  IoT-class  microcontrollers[34].  For
instance,  Mistify[35] introduced  an  automated  DNN
porting  system  that  takes  a  cloud-trained  model  and
generates  a  suite  of  optimized  smaller  models  for
different  edge  devices,  drastically  reducing  manual
effort  in deploying AI across heterogeneous hardware.
Edge computing testbeds[36] have demonstrated orders-
of-magnitude  latency  improvements  for  tasks  like
object detection using such co-location of computation.
Moreover,  edge  AI  frameworks  increasingly  leverage
on-device  TinyML  capabilities:  models  like
MCUNet[37] showed that even microcontrollers can run
surprisingly  advanced  vision  models  by  automating
neural  architecture  search  under  tight  memory
constraints.  These  technologies  enable  faster,  more
scalable,  and  privacy-preserving  intelligence  in  IoT
systems,  forming  a  cornerstone  of  modern  EIoT
deployments.

3　Engaged Interaction

Interaction  is  essential  to  the  EIoT  paradigm.  While

embodied agents possess the ability to sense and react
upon  the  physical  world  independently,  many  real-
world  scenarios  require  them  to  work  together.
Whether  coordinating  to  accomplish  complex  tasks  or
managing  encounters  in  shared  environments,  agents
must  be  able  to  communicate,  align  their  actions,  and
adapt to one another in real time.

These interactions are governed by agents’ mobility,
resource  limitations,  and  the  dynamic  nature  of  their
surrounding  environment.  Consequently,
communication  is  typically opportunistic and
intermittent,  occurring  only  when  collaboration  is
necessary  and  physical  proximity  makes  it  feasible.
Such  behavior  reflects  the  principles  of  Opportunistic
IoT  paradigms[38] and  embodies  EIoT’s  emphasis  on
context-aware,  transient  networking  that  minimizes
connectivity  overhead  while  maximizing  task
relevance, as illustrated in Fig. 2.

What sets EIoT apart from traditional IoT systems is
not  only  the  agents’ enhanced  autonomy,  but  also  the
shift  away  from  continuous  connectivity  and
centralized  coordination.  Unlike  conventional  IoT
nodes  that  rely  on  persistent  network  links  for  data
aggregation and control, EIoT agents interact in a more
flexible,  peer-to-peer  manner,  enabling  local  decision-
making and collective adaptation.

EIoT’s  paradigm  of  intermittent,  on-demand
interaction drastically reduces the overhead of constant
connectivity.  Yet,  it  imposes  specific  demands  on  the
underlying communication substrate that enables these
engaged interactions:

(1) Lightweight data exchange. EIoT agents operate
under  strict  energy  constraints.  Efficient,  ultra-low-
power methods are  essential  for  exchanging necessary
data during brief, opportunistic encounters with nearby
agents.
 

 
Fig. 2    Illustration  of  engaged  interactions:  Agents  interact
conditionally  with  opportunistic  and  intermittent
connections.
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(2)  Heterogeneous  interconnection. Agents  for
diverse  applications  may  use  different  communication
technologies.  Solutions  enabling  direct  information
exchange  across  these  heterogeneous  protocols  are
critical for seamless collaboration.

(3)  Concurrent  connections. Multiple  agents  may
interact  simultaneously  in  dense  deployments.  Thus,
robust  techniques  are  needed  to  manage  signal
collisions,  decode  overlapping  transmissions,  and
maintain reliable communication.

The  rest  of  this  section  details  key  technologies
designed  to  meet  these  communication  challenges,
thereby  supporting  the  intermittent,  low-power,  and
flexible interactions fundamental to realizing collective
embodied intelligence in EIoT.

3.1　Backscatter communication

EIoT  demands  lightweight  communication  to  support
energy-constrained  agents  and  opportunistic
interactions.  Backscatter  communication  meets  this
need  by  enabling  devices  to  reflect  existing  signals
instead  of  generating  their  own,  drastically  reducing
power consumption. Its passive, short-range nature fits
well  with  on-demand,  proximity-based  connections
among EIoT agents.

Recent  backscatter  techniques  leverage  ambient  or
existing  infrastructure  signals  for  low-power  and
opportunistic  communication.  Ambient  backscatter[39]

utilizes pervasive TV and cellular signals as excitation
sources for passive communication. FM backscatter[40]

reflects  FM  radio  signals  to  embed  data,  offering  a
simple  and  energy-efficient  solution  for  low-
complexity  devices.  Wi-Fi  backscatter[41] reuses
existing  Wi-Fi  infrastructure,  by  modulating  RSSI  to
different  levels  for  representing  different  data  bits.
Advancements  like  BackFi[42],  which  manipulates
signal phase, and WiTag[43], which selectively corrupts
subframes  and  observes  ACKs,  further  improve
encoding  efficiency  by  using  ambient  signals  in  the
environment as excitation sources.

Ambient  backscatter  typically  supports  only  short
ranges (a few meters),  which limits  its  applicability in
complex  EIoT  environments.  To  address  this,
researchers  have  enhanced  both  range  and  scalability
by  designing  new  backscatter  modulation  schemes.
Hitchhike[44] increases  communication  distance  by
piggybacking  data  on  existing  packets  through
codeword  translation.  LoRea[45] pushes  the  range  to
kilometers  using  narrowband  modulation.  PPLoRa[46]

concentrates  the  energy  from  the  whole  spectrum  for
long-range  weak  signal  demodulation.  For  dense
deployments,  OFDMA  backscatter[47] and
Digiscatter[48] introduce OFDMA techniques to support
concurrent  transmissions  from  multiple  EIoT  agents,
enhancing scalability of passive networks.

Backscatter is  becoming a key EIoT communication
technology,  meeting  low-power  needs  while  ensuring
range and scalability.

3.2　Cross technology communication

EIoT comprises diverse agents using different wireless
protocols.  They  require  flexible  and  low-overhead
communication  without  relying  on  centralized
infrastructure.  Cross  Technology  Communication
(CTC)  addresses  this  need  by  enabling  direct
interaction across heterogeneous protocols, eliminating
the need for external gateways. Existing CTC methods
mainly fall into two categories:

(1) Signal emulation. This approach modifies signal
modulation,  allowing  a  signal  from one  technology  to
mimic the format of another. A representative example
is  LTE2B[49],  which  enables  ZigBee  devices  to
communicate  with  LTE  via  physical-layer  signal
emulation.  Similarly,  XFi[50] decodes  LoRa  packets
using Wi-Fi receivers by recovering chirp signals from
CSI  traces,  further  expanding  the  interoperability  of
EIoT devices.

(2) Feature-based encoding. This approach embeds
data  by  creating  unique,  distinctive  features  in  the
transmitted signal, such as signal energy, packet length,
or  the  time  between  packets.  Even  if  heterogeneous
receivers  cannot  decode  the  raw data  packet,  they  can
interpret  the  message  by  recognizing  these  distinctive
signal  features.  This  approach  is  particularly  valuable
for resource-constrained EIoT devices which may lack
the processing power for full protocol stack emulation.
Recent  works  primarily  focused  on  packet-level
information[51–52] to  convey  data,  leveraging
characteristics  like  signal  strength[53–54],  transmission
time[55–56], and packet length[57].

These CTC approaches align well with opportunistic
and  low-bandwidth  EIoT  communication,  enabling
efficient  data  exchange  across  diverse  agents  with
minimal overhead.

3.3　Collision-resilient communication

With  the  increasing  density  of  EIoT  deployment,
concurrent  transmissions  among  agents  become
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common.  Collision-resilient  communication  enables
reliable  connectivity  by  extracting  individual  packets
from  overlapped  signals  at  the  physical  layer,  using
features  in  time,  frequency,  or  energy  domains.  This
allows  multiple  agents  to  transmit  simultaneously
without  loss  of  critical  data.  Current  research  for
collision-resilient  communication  primarily  falls  into
two  categories  based  on  their  approach  to  handling
physical layer interference:

(1)  Hardware-assisted  communication. Hardware
assisted  solutions  leverage  specific  physical  layer
designs or  hardware capabilities  to  mitigate  or  resolve
collisions.  MIMO/MU-MIMO[58–59] techniques  utilize
multiple  antennas  on  wireless  devices  to  synchronize
signal  phases  from  different  transmitters,  enabling
concurrent  transmissions  without  inter-packet
interference.  Successive  Interference  Cancellation
(SIC)[60–61] aims  to  decode  signals  even  when
collisions  occur.  SIC iteratively  estimates  and extracts
decoded  symbols,  effectively  subtracting  decoded
strong  signals  to  reveal  weaker  ones  underneath.
Capture  effect  approaches  leverage  signal  strength
differences  to  decode  the  strongest  signal  in  a
collision[62],  treating  others  as  interference.  Hardware
assisted approaches incur high burden on EIoT agents,
including multiple RF chains and complex processing,
generally unsuitable for low-power devices.

(2)  Software  based  communication. Software
solutions  offer  greater  adaptability  to  low-power EIoT
agents  through  advanced  signal  processing  and
protocol design. ZigZag[63] resolves Wi-Fi collisions by
leveraging  timing  offsets  to  extract  non-overlapping
segments.  mZig[64] applies  similar  techniques  to
separate  ZigBee  packets  from  a  single  collision.
Netscatter[30] modifies  LoRa  encoding  to  support
backscatter  devices,  enabling  hundreds  of  concurrent
transmissions  via  frequency  discrimination.
DeepSense[65] uses  neural  networks  to  identify  and
decode collided frames, supporting random access and
cross-protocol coexistence.

Collision-resilient  communication  techniques
enhance  the  communication  reliability  in  dense
deployments,  paving  the  way  for  large-scale  and  low-
latency EIoT agents collaboration.

4　Evolutionary Intelligence

In  EIoT,  the  challenge  lies  in  endowing  embodied
systems  with  sustained,  adaptive,  and  collaborative
intelligence—capabilities  that  go  beyond  the  task-

specific  inference  common  in  traditional  IoT.
Intelligence  that  is  pre-trained  once  and  fixed  at
deployment  is  inadequate  for  agents  operating  in
dynamic,  uncertain  physical  environments.  These
agents  must  be  able  to  learn  continually,  adapt  to
environmental  drift,  and  reorganize  their  collective
behavior in response to new demands.

We  frame  this  as  an evolutionary shift  in  EIoT,  as
depicted  in Fig.  3.  First,  we  trace  the  architectural
transition  from  lightweight  Deep  Neural  Networks
(DNNs)  toward  Transformer-based[66] and  foundation-
model[67] approaches,  enabling  embodied  agents  to
integrate  multimodal  perception,  temporal  reasoning,
and  contextual  awareness—an  essential  step  noted  in
embodied  intelligence  literature[11].  Second,  we
examine  how  agents  achieve  self-evolution  through
continuous  perception–action  loops,  updating  models,
representations,  and  control  policies  in  situ,  as
emphasized  in  continual  and  lifelong  learning
frameworks[68]. Third, we investigate the emergence of
collective  intelligence  from  inter-agent  coordination,
where  decentralized  decision-making,  shared
perception,  and  adaptive  role  allocation  allow  the
group  to  accomplish  tasks  beyond the  capacity  of  any
single  agent—aligning  with  swarm  intelligence
studies[69].

These  three  threads—multimodal  reasoning,
continual  adaptation,  and  emergent  collectivity—
demonstrate that EIoT intelligence is no longer defined
by  computational  scale  alone,  but  by  its  capacity  to
evolve:  to  refine  its  capabilities  through  embodied
experience,  adapt  to  shifting  contexts,  and  recompose
itself in collaboration with others.

4.1　Smarter model

Within  the  developmental  framework  of  EIoT,  IoT
devices are undergoing a fundamental paradigm shift in
intelligent  modeling.  The  core  evolutionary  trajectory
manifests  as  a  historic  transition:  from  traditional
lightweight DNNs in resource-constrained scenarios to
Transformer-based  LLMs.  This  transformation  is
propelled by two synergistic forces:

(1)  Escalating  Environmental  Perception  Demands.
Embodied  IoT  requires  devices  to  fuse  diverse  sensor
data  (e.g.,  sound,  light)  with  high  precision,  shifting
from simple event detection to complex environmental
understanding  for  decision-making.  M4[70] proposes  a
unified  mobile  intelligence  framework  using  a
foundation  model  and  lightweight  adapters  to  handle
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multimodal  inputs,  reducing  system  fragmentation
efficiently. Penetrative AI[28] extends LLMs to interpret
sensor signals, demonstrating semantic analysis of real-
world  data  for  context-aware  actions  and  cyber-
physical intelligence.

(2)  Increasing  Task  Interaction  Complexity.
Establishing a unified language-driven interface across
diverse  sensory,  control,  and  computational  domains
by  embedding  LLMs  as  semantic  planners  and
communicators.  Through  structured  task
decomposition,  intermediate  reasoning  formats  (e.g.,
FSMs,  UI  graphs),  and knowledge augmentation,  they
enable  embodied  agents  to  interpret,  coordinate,  and
generalize  complex  real-world  tasks  under  dynamic,
user-centric scenarios[71–73].

4.2　Embodied self-evolution

Although  Transformer  architectures  empower  edge
devices  with  cognitive-level  intelligence,  their
capabilities  remain  constrained  by  non-stationary
properties  of  the  physical  world  (e.g.,  environmental
parameter  drift,  long-tail  user  behavior  distributions)
and  scenario  fragmentation  (e.g.,  defect  pattern
variations  in  industrial  inspection).  We  posit  that  the
ultimate  value  of  large  models  in  AIoT  terminals  lies

not  in  static  superiority  but  in  establishing  self-
evolution  capability  embedded  within  physical
feedback loops. This evolution manifests through three
core mechanisms:

(1)  Environment-driven  continuous  learning.  Some
studies  adopt  online  meta-learning  for  continuous
learning. LifeLearner[74] leverages real-time sensor data
streams  to  dynamically  reparameterize  computational
graphs  (e.g.,  via  MAML  algorithms),  enabling
synchronous  weight  updates  during  inference  (field
tests in industrial robotics: 7% average latency increase
vs.  83% reduction  in  accuracy  decay).  Federated
continual  learning  offers  decentralized  adaptation
mechanism  for  continuous  learning.  FedINC[75] and
Cross-FCL[76] trigger  federated  continual  learning
based  on  confidence  thresholds  for  out-of-distribution
(OOD)  samples  encountered  post-deployment,
enabling  cross-node  knowledge  transfer  of  critical
cases.

(2)  Agent-environment  co-evolution  architecture.
Transformer-driven  embodied  agents[77−79] integrate
pre-trained  knowledge  with  real-time  sensory  data  to
dynamically  adapt  to  changing  environments  (e.g.,
lighting  variations,  moving  objects),  achieving  an
intelligent  leap  from  rule-based  responses  to

 

 
Fig. 3    Illustration of evolutionary intelligence.
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autonomous  decision-making.  These  systems
continuously  adjust  decision  weights  to  balance  prior
knowledge  with  real-time  observations,  ultimately
enabling  more  natural  and  safer  environmental
interactions.  Intelligent  agents  achieve  self-
evolution[80−82] by  continuously  interacting  with  their
environment  through  language,  vision,  or  physical
actions.  Using  unsupervised  or  reinforcement  learning
mechanisms,  they  autonomously  acquire  new
knowledge  and  dynamically  optimize  their  behavioral
strategies.  This  iterative  learning  process  enables
agents  to  progressively  enhance  their  environmental
adaptability—transitioning  from  fixed  response
patterns  to  context-aware  decision-making,  and
ultimately  developing  generalized  problem-solving
capabilities  that  transcend  initial  programming
constraints.

(3)  Evolutionary  efficacy  optimization.  To  realize
sustained  intelligence  in  EIoT  systems,  the  escalating
demands  introduced  by  large-scale  models  and
continual  learning  must  be  addressed,  particularly
under  the  tight  constraints  of  IoT  devices  in  terms  of
memory,  processing  power,  energy  consumption,  and
network  bandwidth.  Miro[83] dynamically  profiles
energy–accuracy  tradeoffs  to  adapt  continual  learning
strategies  on  edge  device.  E-DomainIL[84] handles
domain  shifts  in  IoT  tasks  without  task  labels  or
memory overhead by reusing frozen parameters within
fixed  architectures,  maintaining  parameter  efficiency
under  limited  memory.  Q-FedUpdate[85] enables
energy-efficient federated learning using low-precision
DSP-based  training,  preserving  full-precision  model
quality  via  accumulated  gradient  tracking  and
quantization–training  pipelining,  reducing  on-device
energy  by  21×.  ELITE[86] integrates  edge–cloud
collaboration  for  online  continual  learning,  using  a
model zoo with on-device selection and latency-aware
fine-tuning,  achieving  a  16.3% accuracy  gain  and
1.98× latency reduction on dynamic task streams.

4.3　Embodied swarm intelligence emergence

In physically grounded environments, embodied agents
rarely  operate  in  isolation.  From biological  systems to
human  societies,  intelligence  often  emerges  not  from
individual  capability  alone,  but  through  collective
organization and inter-agent interaction. Reflecting this
principle,  swarm  intelligence,  emerging  from  the
physical  and  semantic  interactions  among  multiple
agents,  marks  a  natural  progression  from  single-agent

autonomy  to  collaborative  intelligence.  Beyond  the
capabilities of isolated agents, these distributed systems
exhibit  novel  behaviors  that  arise  from  collaboration,
including  shared  perception,  decentralized  decision-
making,  and  coordinated  actuation  within  a  common
physical  environment.  Its  emergence  is  primarily
driven by two interelated dimensions:

(1)  Intra-swarm  relational  awareness.  Agents  in  a
swarm  must  perceive,  interpret,  and  respond  to  the
spatial  configurations  and  interactive  behaviors  of
other  agents  within  the  swarm.  This  dimension  of
intelligence  is  critical  for  enabling  local  coordination
strategies  such  as  formation  control,  collision
avoidance,  and  dynamic  topology  adaptation.  By
maintaining  an  accurate  understanding  of  relative
positions,  velocities,  intentions,  and  communication
states,  agents  are  able  to  act  coherently  as  a  group
without relying on centralized control. EvolveGraph[87]

constructs  latent  interaction  graphs  to  represent
evolving  spatial  and  behavioral  relationships  among
heterogeneous agents. HEAT[88] models heterogeneous
agents’ dynamics,  interactions,  and  map  context  in
connected  autonomous  driving  by  an  edge-aware
attention  graph  network.  Tested  on  urban  traffic,  it
achieves  0.66 m  displacement  error,  supporting  safe
planning  under  complex  scenarios.  MTR/MTR++[89]

proposes a transformer-based framework that performs
global  intent  localization  and  local  trajectory
refinement  to  enable  accurate  and  multimodal  future
prediction. MTR++ extends this to simultaneous multi-
agent forecasting, leveraging mutual intention guidance
and  symmetric  context  modeling.  ORI[90] adopts  a
trainable  adjacency  matrix  with  a  novel  AdaRelation
optimizer  to  dynamically  learn  interaction  graphs  for
relational inference in evolving multi-agent systems. It
enables  real-time  adaptation  to  changing  inter-agent
dynamics  and  generalizes  across  trajectory  patterns,
outperforming  offline  methods  in  dynamic  settings.
TransformLoc[91] enables  accurate  and  low-cost
localization in heterogeneous drone swarms by turning
advanced  MAVs  (AMAVs)  into  mobile  localization
infrastructures  for  lightweight,  resource-constrained
MAVs  (BMAVs),  allowing  real-time  collaborative
positioning. Deployed on industrial drones, it improves
localization  accuracy  by  up  to  68% and  boosts
navigation  success  rates  by  60% compared  to  prior
methods.

(2)  Swarm-level  cooperative  tasking.  While  intra-
swarm  awareness  enables  agents  to  understand  each
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other’s  states,  effective  operation  in  real-world
environments  also  demands  coordinated action toward
shared objectives. Agents in a swarm must collaborate
across space and time to accomplish tasks such as area
exploration,  target  tracking,  cooperative  transport,  and
distributed decision-making under partial observability.
SwarmMap[92] enables  efficient  multi-agent  visual
SLAM  for  tasks  like  drone  coordination  and
autonomous  exploration  by  using  log-based  delta
synchronization,  where  only  incremental  updates  are
shared  between  agents  to  reduce  redundant
transmission.  Kouzeghar  et  al.[93] propose  to  achieve
multi-agent  UAV  pursuit-evasion  in  unknown,
dynamic environments  with evasive targets.  It  extends
MADDPG  with  a  role-based  reinforcement  learning
framework  guided  by  a  Voronoi-based  reward,  where
UAVs  assume  heterogeneous  roles  for  balanced
exploration  and  tracking.  CoELA[94] is  a  modular
framework  that  integrates  LLMs  (e.g.,  GPT-4)  into
multi-agent  systems  for  decentralized  cooperation  in
embodied  tasks  with  raw  perception  and  costly
communication,  so  that  enables  agents  to  coordinate
long-horizon  goals  more  effectively.  MAEN[95] uses
multi-agent reinforcement learning to coordinate UAVs
as mobile access points for emergency communication
in  disaster  scenarios.  It  introduces  grouping  and
information sharing to scale collaboration to dozens of
UAVs,  and  employs  reward  decomposition  for
effective  task  allocation.  REMAC[96] proposes  a  self-
reflective and self-evolving framework for multi-agent
collaboration  in  long-horizon  robotic  manipulation.  It
combines  offline  skill  learning  with  online  reflective
adaptation,  allowing  agents  to  improve  coordination
over time without explicit supervision.

As  demonstrated  across  recent  works,  the  collective
capabilities  of  a  swarm are  not  merely  an  aggregation
of  individual  functions,  but  an  emergent  property  that
reflects contextual awareness, relational reasoning, and
task-level  cooperation.  It  is  a  critical  direction  for
realizing  embodied,  scalable,  and  self-organizing
intelligence  across  physical  environments,  thus  is
becoming  increasingly  important  to  the  evolution  of
EIoT systems.

5　Challenges and Frontier Issue

While  EIoT  presents  a  transformative  vision  for
distributed, agent-based intelligence rooted in physical
environments, its realization is accompanied by a range
of  technical  and  theoretical  challenges.  These

challenges  span  multiple  layers  of  system  design—
from  perception  and  communication  to  coordination,
learning,  and  system-level  evolution.  In  this  section,
we  identify  several  critical  bottlenecks  and  frontier
issues that  must  be addressed to advance EIoT from a
conceptual framework to a robust, scalable paradigm.

5.1　Compositionality of agents and intelligence

A central challenge in EIoT lies in the compositionality
of  agents—how  multiple  embodied  agents,  each  with
partial  capabilities  and  local  views,  can  dynamically
coordinate  to  accomplish  complex  tasks.  Unlike
monolithic  AI  systems,  EIoT  emphasizes  distributed
autonomy  and  modular  interaction.  However,  existing
approaches  to  agent  design  often  assume  fixed  roles,
centralized  orchestration,  or  predefined  protocols.
Achieving compositional intelligence requires agents to
flexibly discover, negotiate, and bind their functions in
real  time,  forming  transient  coalitions  and  collective
behaviors.  This  composability  must  be  supported
across  both  behavioral  and  architectural  dimensions,
including  shared  semantics,  role  abstraction,  task
delegation,  and  multi-agent  planning.  Moreover,  the
composition  process  itself  must  be  situated,  meaning
that  it  must  respect  embodiment  constraints—such  as
physical  proximity,  actuation  range,  and  sensing
limitations.  Developing  lightweight,  decentralized
mechanisms  for  emergent  composition—particularly
under  uncertainty  and  intermittent  connectivity—
remains a key open question.

5.2　Context-aware connectivity

Embodied  agents  do  not  communicate  continuously,
but  instead  interact  based  on  physical  context,  task
relevance, and environmental conditions. For example,
an agent  may prioritize connecting with a  nearby peer
carrying  complementary  sensor  data,  or  defer
communication when engaged in critical motor control
tasks.  This  creates  a  need  for  connectivity  decisions
that  are  not  only  driven  by  link  quality,  but  also
informed  by  situational  awareness—such  as  location,
object  proximity,  task  urgency,  or  shared  mission
goals.  Designing  such  context-aware  connectivity
mechanisms  introduces  significant  complexity:  agents
must  integrate  multi-modal  sensory  data  into
communication logic, assess the value of each potential
connection,  and  adapt  their  interaction  frequency
accordingly.  Unlike  traditional  IoT  where
communication  is  periodic  and  infrastructure-driven,
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EIoT  demands  adaptive,  perception-driven
communication  strategies  that  can  filter,  defer,  or
accelerate interactions in response to changing physical
and task-specific contexts.

5.3　Intermittent links

Embodied  agents  often  move  through  dynamic
physical  environments,  resulting  in  inherently
intermittent and unpredictable short-lived links. At the
same  time,  these  agents  typically  operate  on  strict
energy  budgets,  which  constrain  their  ability  to
maintain  active  radios  or  engage  in  continuous
neighbor  discovery.  This  dual  challenge  of  transient
connectivity  and  tight  energy  constraints  makes  it
difficult  to  ensure  timely  and  reliable  information
exchange.  Conventional  networking  techniques—such
as  persistent  beacons,  routing  table  maintenance,  or
active  scanning—are  too  resource-intensive  for  such
scenarios.  Therefore,  EIoT  requires  new  lightweight
and  predictive  coordination  strategies  that  can
opportunistically  initiate  communication  during  brief
contacts,  while  minimizing  idle  listening  and
unnecessary transmissions. Solutions must also account
for  variable  encounter  durations,  uncertain  mobility
patterns,  and  the  need  for  fast  data  exchange  before
disconnection occurs.

5.4　Guaranteeing  efficient  online  learning  under
physical constraints

A fundamental challenge in EIoT is enabling embodied
agents  to  perform  online  learning  during  continuous
interaction with dynamic physical environments, while
strictly  adhering  to  inherent  constraints.  Unlike
controlled  simulations,  real-world  interactions  involve
irreversible  consequences  (e.g.,  collision,  system
damage) and operate under severe resource limitations
(compute,  power,  latency).  Agents  must  learn  and
adapt in situ from sparse, noisy data streams generated
during  task  execution.  This  demands  sample-efficient
algorithms (e.g., meta-learning, Bayesian optimization)
capable  of  rapid  adaptation  to  unforeseen  conditions
with  minimal  trials.  Crucially,  the  learning  process
itself  must  incorporate  intrinsic  safety  mechanisms.
Techniques include constrained reinforcement learning,
formal  verification  of  learned  policies  before
deployment,  uncertainty-aware  exploration  to  avoid
high-risk  states,  and  real-time  monitoring  to  override
unsafe  actions.  The  key  is  dynamically  balancing
exploration  (seeking  new  knowledge  for  better  long-

term performance) and exploitation (relying on known
safe  policies),  ensuring  task  completion  is  never
compromised  by  the  learning  process.  Achieving
constrained,  real-time  interaction-based  learning  is
imperative  for  trustworthy  and  resilient  evolution  of
embodied intelligence in the physical world.

5.5　Security, safety, and embodied ethics

As EIoT systems begin to act autonomously in physical
environments—especially  in  safety-critical  domains
such  as  healthcare,  manufacturing,  or  urban
infrastructure—they  raise  urgent  concerns  related  to
security, safety, and ethical behavior. Threat vectors in
EIoT are more complex than in traditional networks, as
adversaries  may  exploit  both  cyber  and  physical
vulnerabilities.  Furthermore,  embodied  agents  can
unintentionally  cause  harm  through  faulty  perception,
poor generalization, or emergent behavior that violates
human  norms.  Ensuring  safe  operation  requires  new
paradigms for verifiability, explainability, and fail-safe
mechanisms tailored to embodied agents. Additionally,
ethical frameworks must account for distributed agency
and  collective  accountability,  especially  when
decision-making is decentralized and emergent.

6　Toward Embodied Intelligence of Things

The  emerging  paradigm  of  EIoT  represents  a
fundamental  shift  in  how  we  conceive  and  construct
intelligent  systems—moving  beyond  centralized
inference  and  disembodied  computation  toward  a
future  where  intelligence  is  physically  grounded,
dynamically  composed,  and  environmentally  situated.
Building upon the foundations of IoT and AIoT, EIoT
introduces  a  new  ambition:  not  just  to  connect  or
augment  things  with  intelligence,  but  to  enable  the
composition  of  intelligence  itself—through  embodied
agents  that  sense,  act,  collaborate,  and  evolve  within
the physical world.

In  this  work,  we  proposed  a  triadic  framework—
Enacted,  Engaged,  and  Evolutionary—to  characterize
the  core  dimensions  of  EIoT  systems.  Enacted  agents
transform  passive  devices  into  locally  autonomous
entities  capable  of  real-time  perception–action  loops.
Engaged agents interact through opportunistic, peer-to-
peer  coordination shaped by physical  context  and task
demands.  Evolutionary  agents  adapt  and  self-organize
over  time,  allowing  distributed  intelligence  to  emerge
from experience, feedback, and composition.

Looking  ahead,  we  envision  the  development  of
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EIoT systems  as  a  progression  across  the  openness  of
perception  and  decision  spaces.  Initial  deployments
may  involve  tightly  scoped  environments  with  fixed
sensing  and  actuation  (e.g.,  data  agents  in  industrial
monitoring).  Subsequent  stages  introduce  greater
autonomy—either  in  decision-making  or  perception—
such as smart home managers or autonomous vehicles.
The  long-term  goal  is  open–open  systems  that
continuously  discover,  learn,  and  act  within  complex,
unstructured, and evolving environments. These agents
will  not  only  perform  tasks  but  also  define
them—collaborating with humans and with each other
to form new, compositional forms of intelligence.

Achieving  this  vision  will  require  significant
advances  in  agent  composition,  embodied  learning,
decentralized  coordination,  and  system-level
evaluation.  It  also  calls  for  a  deeper  integration  of
insights  from  AI,  robotics,  IoT,  systems  engineering,
and cognitive science. But the promise of EIoT is clear:
a  new  class  of  intelligent  systems  that  are  not  merely
embedded in the world—but arise from it.
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